Spaces:
Running
Running
File size: 18,933 Bytes
e1ebb2f 4045262 db7e40d d1abdf9 9ce6b31 db7e40d d1abdf9 c0831f4 5a29686 4045262 fc4abc8 db7e40d 9ce6b31 fc4abc8 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 9ce6b31 5a29686 fc4abc8 5a29686 fc4abc8 dea33ff fc4abc8 dea33ff fc4abc8 dea33ff fc4abc8 5a29686 dea33ff db7e40d dea33ff 956f2af db7e40d dea33ff d1abdf9 9ce6b31 dea33ff 9ce6b31 d1abdf9 9ce6b31 956f2af 9ce6b31 d1abdf9 956f2af dea33ff 956f2af dea33ff fc4abc8 956f2af dea33ff fc4abc8 956f2af fc4abc8 956f2af fc4abc8 956f2af fc4abc8 956f2af fc4abc8 dea33ff db7e40d 956f2af dea33ff 956f2af d1abdf9 fc4abc8 956f2af d1abdf9 dea33ff 956f2af d1abdf9 fc4abc8 dea33ff fc4abc8 db7e40d dea33ff 956f2af dea33ff db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d 95816fe db7e40d 95816fe db7e40d d1abdf9 95816fe db7e40d fc4abc8 db7e40d f8437ab db7e40d fc4abc8 f8437ab db7e40d f8437ab db7e40d f8437ab fc4abc8 f8437ab 5a29686 db7e40d 5a29686 f8437ab fc4abc8 f8437ab 5a29686 f8437ab fc4abc8 f8437ab fc4abc8 f8437ab 5a29686 f8437ab fc4abc8 f8437ab db7e40d f8437ab db7e40d fc4abc8 5a29686 db7e40d fc4abc8 db7e40d fc4abc8 db7e40d fc4abc8 dea33ff fc4abc8 dea33ff fc4abc8 db7e40d fc4abc8 dea33ff fc4abc8 dea33ff fc4abc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import spaces
import streamlit as st
from PIL import Image
import torch
from transformers import (
DonutProcessor,
VisionEncoderDecoderModel,
LayoutLMv3Processor,
LayoutLMv3ForSequenceClassification,
AutoProcessor,
AutoModelForCausalLM,
AutoModelForVisualQuestionAnswering
)
from ultralytics import YOLO
import io
import base64
import json
from datetime import datetime
import os
import logging
# Add this near the top of the file, after imports
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@st.cache_resource
def load_model(model_name):
"""Load the selected model and processor"""
try:
if model_name == "OmniParser":
try:
# Load model directly using official implementation
processor = AutoProcessor.from_pretrained(
"microsoft/OmniParser",
trust_remote_code=True
)
model = AutoModelForVisualQuestionAnswering.from_pretrained(
"microsoft/OmniParser",
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
if torch.cuda.is_available():
model = model.to("cuda")
st.success("Successfully loaded OmniParser model")
return {
'processor': processor,
'model': model
}
except Exception as e:
st.error(f"Failed to load OmniParser from HuggingFace Hub: {str(e)}")
logger.error(f"OmniParser loading error: {str(e)}", exc_info=True)
return None
elif model_name == "Donut":
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base")
# Configure Donut specific parameters
model.config.decoder_start_token_id = processor.tokenizer.bos_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.vocab_size = len(processor.tokenizer)
return {'model': model, 'processor': processor}
elif model_name == "LayoutLMv3":
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base")
return {'model': model, 'processor': processor}
else:
raise ValueError(f"Unknown model name: {model_name}")
except Exception as e:
st.error(f"Error loading model {model_name}: {str(e)}")
logger.error(f"Error details: {str(e)}", exc_info=True)
return None
@spaces.GPU
@torch.inference_mode()
def analyze_document(image, model_name, models_dict):
"""Analyze document using selected model"""
try:
if models_dict is None:
return {"error": "Model failed to load", "type": "model_error"}
if model_name == "OmniParser":
# Process image with OmniParser
inputs = models_dict['processor'](
images=image,
return_tensors="pt",
)
if torch.cuda.is_available():
inputs = {k: v.to("cuda") if hasattr(v, "to") else v
for k, v in inputs.items()}
# Generate outputs
outputs = models_dict['model'](**inputs)
# Process results
# The exact processing will depend on the model's output format
results = {
"predictions": outputs.logits.softmax(-1).tolist(),
"detected_elements": len(outputs.logits[0]),
"model_output": {
k: v.tolist() if hasattr(v, "tolist") else str(v)
for k, v in outputs.items()
if k != "last_hidden_state" # Skip large tensors
}
}
return results
elif model_name == "Donut":
model = models_dict['model']
processor = models_dict['processor']
# Process image with Donut
pixel_values = processor(image, return_tensors="pt").pixel_values
task_prompt = "<s_cord>analyze the document and extract information</s_cord>"
decoder_input_ids = processor.tokenizer(
task_prompt,
add_special_tokens=False,
return_tensors="pt"
).input_ids
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=512,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=4,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(task_prompt, "").replace("</s_cord>", "").strip()
try:
result = json.loads(sequence)
except json.JSONDecodeError:
result = {"raw_text": sequence}
return result
elif model_name == "LayoutLMv3":
model = models_dict['model']
processor = models_dict['processor']
# Process image with LayoutLMv3
encoded_inputs = processor(
image,
return_tensors="pt",
add_special_tokens=True,
return_offsets_mapping=True
)
outputs = model(**encoded_inputs)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
# Convert predictions to labels
words = processor.tokenizer.convert_ids_to_tokens(
encoded_inputs.input_ids.squeeze().tolist()
)
result = {
"predictions": [
{
"text": word,
"label": pred
}
for word, pred in zip(words, predictions)
if word not in ["<s>", "</s>", "<pad>"]
],
"confidence_scores": outputs.logits.softmax(-1).max(-1).values.squeeze().tolist()
}
return result
else:
return {"error": f"Unknown model: {model_name}", "type": "model_error"}
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"Analysis error: {str(e)}\n{error_details}")
return {
"error": str(e),
"type": "processing_error",
"details": error_details
}
# Set page config with improved layout
st.set_page_config(
page_title="Document Analysis Comparison",
layout="wide",
initial_sidebar_state="expanded"
)
# Add custom CSS for better styling
st.markdown("""
<style>
.stAlert {
margin-top: 1rem;
}
.upload-text {
font-size: 1.2rem;
margin-bottom: 1rem;
}
.model-info {
padding: 1rem;
border-radius: 0.5rem;
background-color: #f8f9fa;
}
</style>
""", unsafe_allow_html=True)
# Title and description
st.title("Document Understanding Model Comparison")
st.markdown("""
Compare different models for document analysis and understanding.
Upload an image and select a model to analyze it.
""")
# Create two columns for layout
col1, col2 = st.columns([1, 1])
with col1:
# File uploader with improved error handling
uploaded_file = st.file_uploader(
"Choose a document image",
type=['png', 'jpg', 'jpeg', 'pdf'],
help="Supported formats: PNG, JPEG, PDF"
)
if uploaded_file is not None:
try:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Document', use_column_width=True)
except Exception as e:
st.error(f"Error loading image: {str(e)}")
with col2:
# Model selection with detailed information
model_info = {
"Donut": {
"description": "Best for structured OCR and document format understanding",
"memory": "6-8GB",
"strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"],
"best_for": ["Invoices", "Forms", "Structured documents", "Tables"]
},
"LayoutLMv3": {
"description": "Strong layout understanding with reasoning capabilities",
"memory": "12-15GB",
"strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"],
"best_for": ["Complex documents", "Mixed layouts", "Documents with tables", "Multi-column text"]
},
"OmniParser": {
"description": "General screen parsing tool for UI understanding",
"memory": "8-10GB",
"strengths": ["UI element detection", "Interactive element recognition", "Function description"],
"best_for": ["Screenshots", "UI analysis", "Interactive elements", "Web interfaces"]
}
}
selected_model = st.selectbox(
"Select Model",
list(model_info.keys())
)
# Display enhanced model information
st.markdown("### Model Details")
with st.expander("Model Information", expanded=True):
st.markdown(f"**Description:** {model_info[selected_model]['description']}")
st.markdown(f"**Memory Required:** {model_info[selected_model]['memory']}")
st.markdown("**Strengths:**")
for strength in model_info[selected_model]['strengths']:
st.markdown(f"- {strength}")
st.markdown("**Best For:**")
for use_case in model_info[selected_model]['best_for']:
st.markdown(f"- {use_case}")
# Inside the analysis section, replace the existing if-block with:
if uploaded_file is not None and selected_model:
if st.button("Analyze Document", help="Click to start document analysis"):
# Create two columns for results and debug info
result_col, debug_col = st.columns([1, 1])
with st.spinner('Processing...'):
try:
# Create a progress bar in results column
with result_col:
st.markdown("### Analysis Progress")
progress_bar = st.progress(0)
# Initialize debug column
with debug_col:
st.markdown("### Debug Information")
debug_container = st.empty()
def update_debug(message, level="info"):
"""Update debug information with timestamp"""
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3]
color = {
"info": "blue",
"warning": "orange",
"error": "red",
"success": "green"
}.get(level, "black")
return f"<div style='color: {color};'>[{timestamp}] {message}</div>"
debug_messages = []
def add_debug(message, level="info"):
debug_messages.append(update_debug(message, level))
debug_container.markdown(
"\n".join(debug_messages),
unsafe_allow_html=True
)
# Load model with progress update
with result_col:
progress_bar.progress(25)
st.info("Loading model...")
add_debug(f"Loading {selected_model} model and processor...")
models_dict = load_model(selected_model)
if models_dict is None:
with result_col:
st.error("Failed to load model. Please try again.")
add_debug("Model loading failed!", "error")
else:
add_debug("Model loaded successfully", "success")
# For device info, we need to check which model we're using
if selected_model == "OmniParser":
model_device = next(models_dict['model'].parameters()).device
else:
model_device = next(models_dict['model'].parameters()).device
add_debug(f"Model device: {model_device}")
# Update progress
with result_col:
progress_bar.progress(50)
st.info("Analyzing document...")
# Log image details
add_debug(f"Image size: {image.size}")
add_debug(f"Image mode: {image.mode}")
# Analyze document
add_debug("Starting document analysis...")
results = analyze_document(image, selected_model, models_dict)
add_debug("Analysis completed", "success")
# Update progress
with result_col:
progress_bar.progress(75)
st.markdown("### Analysis Results")
if isinstance(results, dict) and "error" in results:
st.error(f"Analysis Error: {results['error']}")
add_debug(f"Analysis error: {results['error']}", "error")
else:
# Pretty print the results in results column
st.json(results)
# Show detailed results breakdown in debug column
add_debug("Results breakdown:", "info")
if isinstance(results, dict):
for key, value in results.items():
add_debug(f"- {key}: {type(value)}")
else:
add_debug(f"Result type: {type(results)}")
# Complete progress
progress_bar.progress(100)
st.success("Analysis completed!")
# Final debug info
add_debug("Process completed successfully", "success")
with debug_col:
if torch.cuda.is_available():
st.markdown("### Resource Usage")
st.markdown(f"""
- GPU Memory: {torch.cuda.max_memory_allocated()/1024**2:.2f}MB
- GPU Utilization: {torch.cuda.utilization()}%
""")
except Exception as e:
with result_col:
st.error(f"Error during analysis: {str(e)}")
add_debug(f"Error: {str(e)}", "error")
add_debug(f"Error type: {type(e)}", "error")
if hasattr(e, '__traceback__'):
add_debug("Traceback available in logs", "warning")
# Add improved information about usage and limitations
def verify_weights_directory():
"""Verify the weights directory structure and files"""
weights_path = "weights"
required_files = {
os.path.join(weights_path, "icon_detect", "model.safetensors"): "YOLO model weights",
os.path.join(weights_path, "icon_detect", "model.yaml"): "YOLO model config",
os.path.join(weights_path, "icon_caption_florence", "model.safetensors"): "Florence model weights",
os.path.join(weights_path, "icon_caption_florence", "config.json"): "Florence model config",
os.path.join(weights_path, "icon_caption_florence", "generation_config.json"): "Florence generation config"
}
missing_files = []
for file_path, description in required_files.items():
if not os.path.exists(file_path):
missing_files.append(f"{description} at {file_path}")
if missing_files:
st.warning("Missing required model files:")
for missing in missing_files:
st.write(f"- {missing}")
return False
return True
# Add this in your app's initialization
if st.checkbox("Check Model Files"):
if verify_weights_directory():
st.success("All required model files are present")
else:
st.error("Some model files are missing. Please ensure all required files are in the weights directory")
st.markdown("""
---
### Usage Notes:
- Different models excel at different types of documents
- Processing time and memory requirements vary by model
- Image quality significantly affects results
- Some models may require specific document formats
""")
# Add performance metrics section
if st.checkbox("Show Performance Metrics"):
st.markdown("""
### Model Performance Metrics
| Model | Avg. Processing Time | Memory Usage | Accuracy* |
|-------|---------------------|--------------|-----------|
| Donut | 2-3 seconds | 6-8GB | 85-90% |
| LayoutLMv3 | 3-4 seconds | 12-15GB | 88-93% |
| OmniParser | 2-3 seconds | 8-10GB | 85-90% |
*Accuracy varies based on document type and quality
""")
# Add a footer with version and contact information
st.markdown("---")
st.markdown("""
v1.1 - Created with Streamlit
\nPowered by Hugging Face Spaces 🤗
""")
# Add model selection guidance
if st.checkbox("Show Model Selection Guide"):
st.markdown("""
### How to Choose the Right Model
1. **Donut**: Choose for structured documents with clear layouts
2. **LayoutLMv3**: Best for documents with complex layouts and relationships
3. **OmniParser**: Best for UI elements and screen parsing
""") |