Spaces:
Runtime error
Runtime error
File size: 14,429 Bytes
a320d56 cca37b5 a320d56 32f8fd9 a320d56 9da0ae1 a320d56 9da0ae1 cca37b5 b734b0f 99b9f14 9ea3ea2 f705169 a320d56 b734b0f 49b73d9 b734b0f 144519d 32f8fd9 99b9f14 2197c6b 32f8fd9 f705169 32f8fd9 a320d56 49b73d9 a320d56 49b73d9 52901ff 1929137 a86d9e9 49b73d9 2197c6b 49b73d9 353b744 2197c6b 52901ff 1929137 353b744 a320d56 49b73d9 1929137 cca37b5 49b73d9 3f8dc6c 49b73d9 1929137 a320d56 cca37b5 49b73d9 cca37b5 a320d56 9ea3ea2 a320d56 3f8dc6c f0f07f6 a320d56 b734b0f e91fa65 a320d56 735f8b3 3d73654 735f8b3 a86d9e9 2197c6b 3f8dc6c 2197c6b 32f8fd9 3f8dc6c a320d56 49b73d9 a320d56 49b73d9 cca37b5 735f8b3 49b73d9 32f8fd9 9da0ae1 49b73d9 a320d56 49b73d9 a320d56 49b73d9 52901ff a320d56 735f8b3 a320d56 735f8b3 e91fa65 735f8b3 e91fa65 735f8b3 2197c6b e91fa65 9da0ae1 a320d56 cca37b5 735f8b3 9da0ae1 a320d56 49b73d9 9da0ae1 735f8b3 9da0ae1 735f8b3 e91fa65 cca37b5 e91fa65 cca37b5 49b73d9 735f8b3 cca37b5 735f8b3 cca37b5 735f8b3 cca37b5 735f8b3 cca37b5 9da0ae1 353b744 9da0ae1 2197c6b 1929137 2197c6b cca37b5 2197c6b cca37b5 9da0ae1 a320d56 f0f07f6 a320d56 9da0ae1 2197c6b 9ea3ea2 52901ff a86d9e9 52901ff 2197c6b 49b73d9 a320d56 1929137 a320d56 cca37b5 49b73d9 cca37b5 a320d56 cca37b5 a320d56 cca37b5 e91fa65 a320d56 49b73d9 735f8b3 a320d56 9ea3ea2 49b73d9 9ea3ea2 32f8fd9 cca37b5 3f8dc6c cca37b5 32f8fd9 cca37b5 a320d56 9ea3ea2 a320d56 9da0ae1 cca37b5 735f8b3 9da0ae1 a320d56 9da0ae1 a320d56 2197c6b a320d56 1929137 e91fa65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import gradio as gr
import random
import time
from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings, OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.question_answering import load_qa_chain
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP = 1
OPENAI_API_LINK = "[OpenAI API Key](https://platform.openai.com/account/api-keys)"
OPENAI_LINK = "[OpenAI](https://openai.com)"
PINECONE_KEY = os.environ.get("PINECONE_KEY", "")
PINECONE_ENV = os.environ.get("PINECONE_ENV", "asia-northeast1-gcp")
PINECONE_INDEX = os.environ.get("PINECONE_INDEX", '3gpp-r16')
PINECONE_LINK = "[Pinecone](https://www.pinecone.io)"
LANGCHAIN_LINK = "[LangChain](https://python.langchain.com/en/latest/index.html)"
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "hkunlp/instructor-large")
EMBEDDING_LOADER = os.environ.get("EMBEDDING_LOADER", "HuggingFaceInstructEmbeddings")
EMBEDDING_LIST = ["HuggingFaceInstructEmbeddings", "HuggingFaceEmbeddings", "OpenAIEmbeddings"]
# return top-k text chunks from vector store
TOP_K_DEFAULT = 15
TOP_K_MAX = 30
SCORE_DEFAULT = 0.33
BUTTON_MIN_WIDTH = 215
LLM_NULL = "LLM-UNLOAD-critical"
LLM_DONE = "LLM-LOADED-9cf"
DB_NULL = "DB-UNLOAD-critical"
DB_DONE = "DB-LOADED-9cf"
FORK_BADGE = "Fork-HuggingFace Space-9cf"
def get_logo(inputs, logo) -> str:
return f"""https://img.shields.io/badge/{inputs}?style=flat&logo={logo}&logoColor=white"""
def get_status(inputs, logo, pos) -> str:
return f"""<img
src = "{get_logo(inputs, logo)}";
style = "margin: 0 auto;float:{pos};border: 2px solid transparent;";
>"""
KEY_INIT = "Initialize Model"
KEY_SUBMIT = "Submit"
KEY_CLEAR = "Clear"
MODEL_NULL = get_status(LLM_NULL, "openai", "right")
MODEL_DONE = get_status(LLM_DONE, "openai", "right")
DOCS_NULL = get_status(DB_NULL, "processingfoundation", "right")
DOCS_DONE = get_status(DB_DONE, "processingfoundation", "right")
TAB_1 = "Chatbot"
TAB_2 = "Details"
TAB_3 = "Database"
TAB_4 = "TODO"
FAVICON = './icon.svg'
LLM_LIST = ["gpt-3.5-turbo", "text-davinci-003"]
DOC_1 = '3GPP'
DOC_2 = 'HTTP2'
DOC_SUPPORTED = [DOC_1]
DOC_DEFAULT = [DOC_1]
DOC_LABEL = "Reference Docs"
MODEL_WARNING = f"Please paste your **{OPENAI_API_LINK}** and then **{KEY_INIT}**"
DOCS_WARNING = f"""Database Unloaded
Please check your **{TAB_3}** config and then **{KEY_INIT}**
Or you could uncheck **{DOC_LABEL}** to ask LLM directly"""
webui_title = """
# OpenAI Chatbot Based on Vector Database
"""
dup_link = f'''<a href="https://huggingface.co/spaces/ShawnAI/VectorDB-ChatBot?duplicate=true"
style="display:grid; width: 200px;">
<img src="{get_logo(FORK_BADGE, "addthis")}"></a>'''
init_message = f"""This demonstration website is based on \
**{OPENAI_LINK}** with **{LANGCHAIN_LINK}** and **{PINECONE_LINK}**
1. Insert your **{OPENAI_API_LINK}** and click `{KEY_INIT}`
2. Insert your **Question** and click `{KEY_SUBMIT}`
"""
PROMPT_DOC = PromptTemplate(
input_variables=["context", "chat_history", "question"],
template="""Context:
##
{context}
##
Chat History:
##
{chat_history}
##
Question:
{question}
Answer:"""
)
PROMPT_BASE = PromptTemplate(
input_variables=['question', "chat_history"],
template="""Chat History:
##
{chat_history}
##
Question:
##
{question}
##
Answer:"""
)
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
def init_rwkv():
try:
import rwkv
return True
except Exception:
print("RWKV not found, skip local llm")
return False
def init_model(api_key, emb_name, emb_loader, db_api_key, db_env, db_index):
init_rwkv()
try:
if not (api_key and api_key.startswith("sk-") and len(api_key) > 50):
return None,MODEL_NULL+DOCS_NULL,None,None,None,None
llm_dict = {}
for llm_name in LLM_LIST:
if llm_name == "gpt-3.5-turbo":
llm_dict[llm_name] = ChatOpenAI(model_name=llm_name,
temperature = OPENAI_TEMP,
openai_api_key = api_key
)
else:
llm_dict[llm_name] = OpenAI(model_name=llm_name,
temperature = OPENAI_TEMP,
openai_api_key = api_key)
if not (emb_name and db_api_key and db_env and db_index):
return api_key,MODEL_DONE+DOCS_NULL,llm_dict,None,None,None
if emb_loader == "OpenAIEmbeddings":
embeddings = eval(emb_loader)(openai_api_key=api_key)
else:
embeddings = eval(emb_loader)(model_name=emb_name)
pinecone.init(api_key = db_api_key,
environment = db_env)
db = Pinecone.from_existing_index(index_name = db_index,
embedding = embeddings)
return api_key, MODEL_DONE+DOCS_DONE, llm_dict, None, db, None
except Exception as e:
print(e)
return None,MODEL_NULL+DOCS_NULL,None,None,None,None
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Q: {human}\nA: {ai}")
return "\n".join(res)
def remove_duplicates(documents, score_min):
seen_content = set()
unique_documents = []
for (doc, score) in documents:
if (doc.page_content not in seen_content) and (score >= score_min):
seen_content.add(doc.page_content)
unique_documents.append(doc)
return unique_documents
def doc_similarity(query, db, top_k, score):
docs = db.similarity_search_with_score(query = query,
k=top_k)
#docsearch = db.as_retriever(search_kwargs={'k':top_k})
#docs = docsearch.get_relevant_documents(query)
udocs = remove_duplicates(docs, score)
return udocs
def user(user_message, history):
return "", history+[[user_message, None]]
def bot(box_message, ref_message,
llm_dropdown, llm_dict, doc_list,
db, top_k, score):
# bot_message = random.choice(["Yes", "No"])
# 0 is user question, 1 is bot response
question = box_message[-1][0]
history = box_message[:-1]
if (not llm_dict):
box_message[-1][1] = MODEL_WARNING
return box_message, "", ""
if not ref_message:
ref_message = question
details = f"Q: {question}"
else:
details = f"Q: {question}\nR: {ref_message}"
llm = llm_dict[llm_dropdown]
if DOC_1 in doc_list:
if (not db):
box_message[-1][1] = DOCS_WARNING
return box_message, "", ""
docs = doc_similarity(ref_message, db, top_k, score)
delta_top_k = top_k - len(docs)
if delta_top_k > 0:
docs = doc_similarity(ref_message, db, top_k+delta_top_k, score)
prompt = PROMPT_DOC
#chain = load_qa_chain(llm, chain_type="stuff")
else:
prompt = PROMPT_BASE
docs = []
chain = LLMChain(llm = llm,
prompt = prompt,
output_key = 'output_text')
all_output = chain({"question": question,
"context": docs,
"chat_history": get_chat_history(history)
})
bot_message = all_output['output_text']
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}
</details>""" for i, doc in enumerate(docs)])
#print(source)
box_message[-1][1] = bot_message
return box_message, "", [[details, bot_message + '\n\nMetadata:\n' + source]]
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
with gr.Blocks(
title = TAB_1,
theme = "Base",
css = """.bigbox {
min-height:250px;
}
""") as demo:
llm = gr.State()
chain_2 = gr.State() # not inuse
vector_db = gr.State()
gr.Markdown(webui_title)
gr.Markdown(dup_link)
gr.Markdown(init_message)
with gr.Row():
with gr.Column(scale=10):
llm_api_textbox = gr.Textbox(
label = "OpenAI API Key",
# show_label = False,
value = OPENAI_API_KEY,
placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
lines=1,
type='password')
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
init = gr.Button(KEY_INIT) #.style(full_width=False)
model_statusbox = gr.HTML(MODEL_NULL+DOCS_NULL)
with gr.Tab(TAB_1):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot(elem_classes="bigbox")
#with gr.Column(scale=1):
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
doc_check = gr.CheckboxGroup(choices = DOC_SUPPORTED,
value = DOC_DEFAULT,
label = DOC_LABEL,
interactive=True)
llm_dropdown = gr.Dropdown(LLM_LIST,
value=LLM_LIST[0],
multiselect=False,
interactive=True,
label="LLM Selection",
)
with gr.Row():
with gr.Column(scale=10):
query = gr.Textbox(label="Question:",
lines=2)
ref = gr.Textbox(label="Reference(optional):")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
clear = gr.Button(KEY_CLEAR)
submit = gr.Button(KEY_SUBMIT,variant="primary")
with gr.Tab(TAB_2):
with gr.Row():
with gr.Column():
top_k = gr.Slider(1,
TOP_K_MAX,
value=TOP_K_DEFAULT,
step=1,
label="Vector similarity top_k",
interactive=True)
with gr.Column():
score = gr.Slider(0.01,
0.99,
value=SCORE_DEFAULT,
step=0.01,
label="Vector similarity score",
interactive=True)
detail_panel = gr.Chatbot(label="Related Docs")
with gr.Tab(TAB_3):
with gr.Row():
with gr.Column():
emb_textbox = gr.Textbox(
label = "Embedding Model",
# show_label = False,
value = EMBEDDING_MODEL,
placeholder = "Paste Your Embedding Model Repo on HuggingFace",
lines=1,
interactive=True,
type='email')
with gr.Column():
emb_dropdown = gr.Dropdown(
EMBEDDING_LIST,
value=EMBEDDING_LOADER,
multiselect=False,
interactive=True,
label="Embedding Loader")
with gr.Accordion("Pinecone Database for "+DOC_1):
with gr.Row():
db_api_textbox = gr.Textbox(
label = "Pinecone API Key",
# show_label = False,
value = PINECONE_KEY,
placeholder = "Paste Your Pinecone API Key (xx-xx-xx-xx-xx) and Hit ENTER",
lines=1,
interactive=True,
type='password')
with gr.Row():
db_env_textbox = gr.Textbox(
label = "Pinecone Environment",
# show_label = False,
value = PINECONE_ENV,
placeholder = "Paste Your Pinecone Environment (xx-xx-xx) and Hit ENTER",
lines=1,
interactive=True,
type='email')
db_index_textbox = gr.Textbox(
label = "Pinecone Index",
# show_label = False,
value = PINECONE_INDEX,
placeholder = "Paste Your Pinecone Index (xxxx) and Hit ENTER",
lines=1,
interactive=True,
type='email')
with gr.Tab(TAB_4):
"TODO"
init_input = [llm_api_textbox, emb_textbox, emb_dropdown, db_api_textbox, db_env_textbox, db_index_textbox]
init_output = [llm_api_textbox, model_statusbox,
llm, chain_2,
vector_db, chatbot]
llm_api_textbox.submit(init_model, init_input, init_output)
init.click(init_model, init_input, init_output)
submit.click(user,
[query, chatbot],
[query, chatbot],
queue=False).then(
bot,
[chatbot, ref,
llm_dropdown, llm, doc_check,
vector_db, top_k, score],
[chatbot, ref, detail_panel]
)
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
#----------------------------------------------------------------------------------------------------------
#----------------------------------------------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(share = False,
inbrowser = True,
favicon_path = FAVICON)
|