|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import models, transforms |
|
from torchvision.models import ResNet18_Weights |
|
|
|
|
|
model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1) |
|
model.fc = nn.Linear(model.fc.in_features, 1000) |
|
model.load_state_dict(torch.load('grass_wood_classification_model.pth')) |
|
model.eval() |
|
|
|
|
|
new_model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1) |
|
new_model.fc = nn.Linear(new_model.fc.in_features, 2) |
|
|
|
|
|
new_model.fc.weight.data = model.fc.weight.data[0:2] |
|
new_model.fc.bias.data = model.fc.bias.data[0:2] |
|
|
|
|
|
def preprocess_image(image): |
|
preprocess = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
input_tensor = preprocess(image) |
|
input_batch = input_tensor.unsqueeze(0) |
|
return input_batch |
|
|
|
|
|
def predict(image): |
|
input_batch = preprocess_image(image) |
|
new_model.eval() |
|
with torch.no_grad(): |
|
output = new_model(input_batch) |
|
_, predicted_class = output.max(1) |
|
class_names = ['grass', 'wood'] |
|
predicted_class_name = class_names[predicted_class.item()] |
|
return predicted_class_name |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type='pil', label="Upload an Image"), |
|
outputs="text", |
|
title="Grass or Wood Classifier Using ResNet18", |
|
description="Upload an image to classify it as either grass or wood." |
|
) |
|
|
|
|
|
demo.launch(share=True) |