Siyun He
upload code and model
5144969
import gradio as gr
import torch
import torch.nn as nn
from torchvision import models, transforms
from torchvision.models import ResNet18_Weights
# Load the saved model
model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
model.fc = nn.Linear(model.fc.in_features, 1000) # Adjust to match the original model's output units
model.load_state_dict(torch.load('grass_wood_classification_model.pth'))
model.eval()
# Create a new model with the correct final layer
new_model = models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
new_model.fc = nn.Linear(new_model.fc.in_features, 2) # Adjust to match the desired output units
# Copy the weights and biases from the loaded model to the new model
new_model.fc.weight.data = model.fc.weight.data[0:2] # Copy only the first 2 output units
new_model.fc.bias.data = model.fc.bias.data[0:2]
# Define the preprocessing function
def preprocess_image(image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0) # Add a batch dimension
return input_batch
# Define the prediction function
def predict(image):
input_batch = preprocess_image(image)
new_model.eval()
with torch.no_grad():
output = new_model(input_batch)
_, predicted_class = output.max(1)
class_names = ['grass', 'wood']
predicted_class_name = class_names[predicted_class.item()]
return predicted_class_name
# Create the Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type='pil', label="Upload an Image"), # Use 'pil' to match the input type
outputs="text",
title="Grass or Wood Classifier Using ResNet18",
description="Upload an image to classify it as either grass or wood."
)
# Launch the interface
demo.launch(share=True)