Spaces:
Sleeping
Sleeping
import cv2 | |
import cvzone | |
import numpy as np | |
import os | |
import gradio as gr | |
import mediapipe as mp | |
from datetime import datetime | |
# Load the YuNet model | |
model_path = 'face_detection_yunet_2023mar.onnx' | |
face_detector = cv2.FaceDetectorYN.create(model_path, "", (320, 320)) | |
# Initialize MediaPipe Face Mesh | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) | |
# Initialize the glass number | |
num = 1 | |
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED) | |
# Count glasses files | |
def count_files_in_directory(directory): | |
file_count = 0 | |
for root, dirs, files in os.walk(directory): | |
file_count += len(files) | |
return file_count | |
# Determine face shape | |
def determine_face_shape(landmarks): | |
# Example logic to determine face shape based on landmarks | |
# This is a simplified version and may need adjustments | |
jaw_width = np.linalg.norm(landmarks[0] - landmarks[16]) | |
face_height = np.linalg.norm(landmarks[8] - landmarks[27]) | |
if jaw_width / face_height > 1.5: | |
return "Round" | |
elif jaw_width / face_height < 1.2: | |
return "Oval" | |
else: | |
return "Square" | |
# Recommend glass shape based on face shape | |
def recommend_glass_shape(face_shape): | |
if face_shape == "Round": | |
return "Square" | |
elif face_shape == "Oval": | |
return "Round" | |
else: | |
return "Square" | |
directory_path = 'glasses' | |
total_glass_num = count_files_in_directory(directory_path) | |
# Change glasses | |
def change_glasses(): | |
global num, overlay | |
num += 1 | |
if num > total_glass_num: | |
num = 1 | |
overlay = cv2.imread(f'glasses/glass{num}.png', cv2.IMREAD_UNCHANGED) | |
return overlay | |
# Process frame for overlay and face shape detection | |
def process_frame(frame): | |
global overlay | |
frame = np.array(frame, copy=True) | |
height, width = frame.shape[:2] | |
face_detector.setInputSize((width, height)) | |
_, faces = face_detector.detect(frame) | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
results = face_mesh.process(frame_rgb) | |
face_shape = "Unknown" | |
glass_shape = "Unknown" | |
if faces is not None and results.multi_face_landmarks: | |
for face in faces: | |
x, y, w, h = face[:4].astype(int) | |
face_landmarks = face[4:14].reshape(5, 2).astype(int) | |
left_eye_x, left_eye_y = face_landmarks[0].astype(int) | |
right_eye_x, right_eye_y = face_landmarks[1].astype(int) | |
eye_center_x = (left_eye_x + right_eye_x) // 2 | |
eye_center_y = (left_eye_y + right_eye_y) // 2 | |
delta_x = right_eye_x - left_eye_x | |
delta_y = right_eye_y - left_eye_y | |
angle = np.degrees(np.arctan2(delta_y, delta_x)) | |
angle = -angle | |
overlay_resize = cv2.resize(overlay, (int(w * 1.15), int(h * 0.8))) | |
overlay_center = (overlay_resize.shape[1] // 2, overlay_resize.shape[0] // 2) | |
rotation_matrix = cv2.getRotationMatrix2D(overlay_center, angle, 1.0) | |
overlay_rotated = cv2.warpAffine( | |
overlay_resize, rotation_matrix, | |
(overlay_resize.shape[1], overlay_resize.shape[0]), | |
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0, 0) | |
) | |
overlay_x = eye_center_x - overlay_rotated.shape[1] // 2 | |
overlay_y = eye_center_y - overlay_rotated.shape[0] // 2 | |
try: | |
frame = cvzone.overlayPNG(frame, overlay_rotated, [overlay_x, overlay_y]) | |
except Exception as e: | |
print(f"Error overlaying glasses: {e}") | |
for face_landmarks_mp in results.multi_face_landmarks: | |
landmarks = np.array([(lm.x * frame.shape[1], lm.y * frame.shape[0]) for lm in face_landmarks_mp.landmark]) | |
face_shape = determine_face_shape(landmarks) | |
glass_shape = recommend_glass_shape(face_shape) | |
return frame, face_shape, glass_shape | |
# Transform function | |
def transform_cv2(frame, transform): | |
if transform == "cartoon": | |
# prepare color | |
img_color = cv2.pyrDown(cv2.pyrDown(frame)) | |
for _ in range(6): | |
img_color = cv2.bilateralFilter(img_color, 9, 9, 7) | |
img_color = cv2.pyrUp(cv2.pyrUp(img_color)) | |
# prepare edges | |
img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
img_edges = cv2.adaptiveThreshold( | |
cv2.medianBlur(img_edges, 7), | |
255, | |
cv2.ADAPTIVE_THRESH_MEAN_C, | |
cv2.THRESH_BINARY, | |
9, | |
2, | |
) | |
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB) | |
# combine color and edges | |
img = cv2.bitwise_and(img_color, img_edges) | |
return img | |
elif transform == "edges": | |
# perform edge detection | |
img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR) | |
return img | |
elif transform == "sepia": | |
# apply sepia effect | |
kernel = np.array([[0.272, 0.534, 0.131], | |
[0.349, 0.686, 0.168], | |
[0.393, 0.769, 0.189]]) | |
img = cv2.transform(frame, kernel) | |
img = np.clip(img, 0, 255) # ensure values are within byte range | |
# Convert BGR to RGB if necessary (for display purposes) | |
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return img_rgb | |
elif transform == "negative": | |
# apply negative effect | |
img = cv2.bitwise_not(frame) | |
return img | |
elif transform == "sketch": | |
# apply sketch effect | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
inv_gray = cv2.bitwise_not(gray) | |
blur = cv2.GaussianBlur(inv_gray, (21, 21), 0) | |
inv_blur = cv2.bitwise_not(blur) | |
img = cv2.divide(gray, inv_blur, scale=256.0) | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
return img | |
elif transform == "blur": | |
# apply blur effect | |
img = cv2.GaussianBlur(frame, (15, 15), 0) | |
return img | |
else: | |
return frame | |
def refresh_interface(): | |
# Reset the image to an empty state or a default image | |
input_img.update(value=None) | |
# Return a message indicating the interface has been refreshed | |
return "Interface refreshed!" | |
def save_frame(frame): | |
# Convert frame to RGB | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Create a unique filename using the current timestamp | |
filename = f"saved_frame_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png" | |
# Save the frame | |
cv2.imwrite(filename, frame) | |
# Refresh the interfaceq | |
refresh_interface() | |
return f"Frame saved as '{filename}'" | |
# Gradio webcam input | |
def webcam_input(frame, transform): | |
frame, face_shape, glass_shape = process_frame(frame) | |
frame = transform_cv2(frame, transform) | |
return frame, face_shape, glass_shape | |
# Gradio Interface | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo: | |
gr.Markdown("<h1 style='text-align: center; font-weight: bold;'>🤓 Glasses Virtual Try-On 🕶️👓</h1>") | |
with gr.Column(elem_classes=["my-column"]): | |
with gr.Group(elem_classes=["my-group"]): | |
transform = gr.Dropdown(choices=["cartoon", "edges", "sepia", "negative", "sketch", "blur", "none"], | |
value="none", label="Select Filter") | |
gr.Markdown("Click the Webcam icon to start the camera, and then press the record button to start the virtual try-on.") | |
input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True) | |
gr.Markdown("Face Shape and Recommended Glass Shape") | |
face_shape_output = gr.Textbox(label="Detected Face Shape") | |
glass_shape_output = gr.Textbox(label="Recommended Glass Shape") | |
next_button = gr.Button("Next Glasses➡️") | |
save_button = gr.Button("Save as a Picture📌") | |
input_img.stream(webcam_input, [input_img, transform], [input_img, face_shape_output, glass_shape_output], stream_every=0.1) | |
with gr.Row(): | |
next_button.click(change_glasses, [], []) | |
with gr.Row(): | |
save_button.click(save_frame, [input_img], []) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |