Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create parser.py
Browse files- utils/parser.py +452 -0
utils/parser.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
def parse_args(input_args=None):
|
5 |
+
parser = argparse.ArgumentParser(description="Train Consistency Encoder.")
|
6 |
+
parser.add_argument(
|
7 |
+
"--pretrained_model_name_or_path",
|
8 |
+
type=str,
|
9 |
+
default=None,
|
10 |
+
required=True,
|
11 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
12 |
+
)
|
13 |
+
parser.add_argument(
|
14 |
+
"--pretrained_vae_model_name_or_path",
|
15 |
+
type=str,
|
16 |
+
default=None,
|
17 |
+
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--revision",
|
21 |
+
type=str,
|
22 |
+
default=None,
|
23 |
+
required=False,
|
24 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--variant",
|
28 |
+
type=str,
|
29 |
+
default=None,
|
30 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
31 |
+
)
|
32 |
+
|
33 |
+
# parser.add_argument(
|
34 |
+
# "--instance_data_dir",
|
35 |
+
# type=str,
|
36 |
+
# required=True,
|
37 |
+
# help=("A folder containing the training data. "),
|
38 |
+
# )
|
39 |
+
|
40 |
+
parser.add_argument(
|
41 |
+
"--data_config_path",
|
42 |
+
type=str,
|
43 |
+
required=True,
|
44 |
+
help=("A folder containing the training data. "),
|
45 |
+
)
|
46 |
+
|
47 |
+
parser.add_argument(
|
48 |
+
"--cache_dir",
|
49 |
+
type=str,
|
50 |
+
default=None,
|
51 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
52 |
+
)
|
53 |
+
|
54 |
+
parser.add_argument(
|
55 |
+
"--image_column",
|
56 |
+
type=str,
|
57 |
+
default="image",
|
58 |
+
help="The column of the dataset containing the target image. By "
|
59 |
+
"default, the standard Image Dataset maps out 'file_name' "
|
60 |
+
"to 'image'.",
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--caption_column",
|
64 |
+
type=str,
|
65 |
+
default=None,
|
66 |
+
help="The column of the dataset containing the instance prompt for each image",
|
67 |
+
)
|
68 |
+
|
69 |
+
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
|
70 |
+
|
71 |
+
parser.add_argument(
|
72 |
+
"--instance_prompt",
|
73 |
+
type=str,
|
74 |
+
default=None,
|
75 |
+
required=True,
|
76 |
+
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
|
77 |
+
)
|
78 |
+
|
79 |
+
parser.add_argument(
|
80 |
+
"--validation_prompt",
|
81 |
+
type=str,
|
82 |
+
default=None,
|
83 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--num_train_vis_images",
|
87 |
+
type=int,
|
88 |
+
default=2,
|
89 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--num_validation_images",
|
93 |
+
type=int,
|
94 |
+
default=2,
|
95 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
96 |
+
)
|
97 |
+
|
98 |
+
parser.add_argument(
|
99 |
+
"--validation_vis_steps",
|
100 |
+
type=int,
|
101 |
+
default=500,
|
102 |
+
help=(
|
103 |
+
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
|
104 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
105 |
+
),
|
106 |
+
)
|
107 |
+
|
108 |
+
parser.add_argument(
|
109 |
+
"--train_vis_steps",
|
110 |
+
type=int,
|
111 |
+
default=500,
|
112 |
+
help=(
|
113 |
+
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
|
114 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
115 |
+
),
|
116 |
+
)
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--vis_lcm",
|
120 |
+
type=bool,
|
121 |
+
default=True,
|
122 |
+
help=(
|
123 |
+
"Also log results of LCM inference",
|
124 |
+
),
|
125 |
+
)
|
126 |
+
|
127 |
+
parser.add_argument(
|
128 |
+
"--output_dir",
|
129 |
+
type=str,
|
130 |
+
default="lora-dreambooth-model",
|
131 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
132 |
+
)
|
133 |
+
|
134 |
+
parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state")
|
135 |
+
|
136 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
137 |
+
|
138 |
+
parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet")
|
139 |
+
parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features")
|
140 |
+
parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter")
|
141 |
+
parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.")
|
142 |
+
parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism")
|
143 |
+
parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)")
|
144 |
+
parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers")
|
145 |
+
parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided")
|
146 |
+
|
147 |
+
parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?")
|
148 |
+
|
149 |
+
# related to CFG:
|
150 |
+
parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training")
|
151 |
+
parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training")
|
152 |
+
parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training")
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
parser.add_argument(
|
157 |
+
"--resolution",
|
158 |
+
type=int,
|
159 |
+
default=1024,
|
160 |
+
help=(
|
161 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
162 |
+
" resolution"
|
163 |
+
),
|
164 |
+
)
|
165 |
+
|
166 |
+
parser.add_argument(
|
167 |
+
"--crops_coords_top_left_h",
|
168 |
+
type=int,
|
169 |
+
default=0,
|
170 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
171 |
+
)
|
172 |
+
|
173 |
+
parser.add_argument(
|
174 |
+
"--crops_coords_top_left_w",
|
175 |
+
type=int,
|
176 |
+
default=0,
|
177 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
178 |
+
)
|
179 |
+
|
180 |
+
parser.add_argument(
|
181 |
+
"--center_crop",
|
182 |
+
default=False,
|
183 |
+
action="store_true",
|
184 |
+
help=(
|
185 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
186 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
187 |
+
),
|
188 |
+
)
|
189 |
+
|
190 |
+
parser.add_argument(
|
191 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
192 |
+
)
|
193 |
+
|
194 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
195 |
+
|
196 |
+
parser.add_argument(
|
197 |
+
"--max_train_steps",
|
198 |
+
type=int,
|
199 |
+
default=None,
|
200 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
201 |
+
)
|
202 |
+
|
203 |
+
parser.add_argument(
|
204 |
+
"--checkpointing_steps",
|
205 |
+
type=int,
|
206 |
+
default=500,
|
207 |
+
help=(
|
208 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
209 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
210 |
+
" training using `--resume_from_checkpoint`."
|
211 |
+
),
|
212 |
+
)
|
213 |
+
|
214 |
+
parser.add_argument(
|
215 |
+
"--checkpoints_total_limit",
|
216 |
+
type=int,
|
217 |
+
default=5,
|
218 |
+
help=("Max number of checkpoints to store."),
|
219 |
+
)
|
220 |
+
|
221 |
+
parser.add_argument(
|
222 |
+
"--resume_from_checkpoint",
|
223 |
+
type=str,
|
224 |
+
default=None,
|
225 |
+
help=(
|
226 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
227 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
228 |
+
),
|
229 |
+
)
|
230 |
+
|
231 |
+
parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001)
|
232 |
+
|
233 |
+
parser.add_argument(
|
234 |
+
"--gradient_accumulation_steps",
|
235 |
+
type=int,
|
236 |
+
default=1,
|
237 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
238 |
+
)
|
239 |
+
|
240 |
+
parser.add_argument(
|
241 |
+
"--gradient_checkpointing",
|
242 |
+
action="store_true",
|
243 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
244 |
+
)
|
245 |
+
|
246 |
+
parser.add_argument(
|
247 |
+
"--learning_rate",
|
248 |
+
type=float,
|
249 |
+
default=1e-4,
|
250 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
251 |
+
)
|
252 |
+
|
253 |
+
parser.add_argument(
|
254 |
+
"--scale_lr",
|
255 |
+
action="store_true",
|
256 |
+
default=False,
|
257 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
258 |
+
)
|
259 |
+
|
260 |
+
parser.add_argument(
|
261 |
+
"--lr_scheduler",
|
262 |
+
type=str,
|
263 |
+
default="constant",
|
264 |
+
help=(
|
265 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
266 |
+
' "constant", "constant_with_warmup"]'
|
267 |
+
),
|
268 |
+
)
|
269 |
+
|
270 |
+
parser.add_argument(
|
271 |
+
"--snr_gamma",
|
272 |
+
type=float,
|
273 |
+
default=None,
|
274 |
+
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
|
275 |
+
"More details here: https://arxiv.org/abs/2303.09556.",
|
276 |
+
)
|
277 |
+
|
278 |
+
parser.add_argument(
|
279 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
280 |
+
)
|
281 |
+
|
282 |
+
parser.add_argument(
|
283 |
+
"--lr_num_cycles",
|
284 |
+
type=int,
|
285 |
+
default=1,
|
286 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
287 |
+
)
|
288 |
+
|
289 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
290 |
+
|
291 |
+
parser.add_argument(
|
292 |
+
"--dataloader_num_workers",
|
293 |
+
type=int,
|
294 |
+
default=0,
|
295 |
+
help=(
|
296 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
297 |
+
),
|
298 |
+
)
|
299 |
+
|
300 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
|
301 |
+
|
302 |
+
parser.add_argument(
|
303 |
+
"--adam_epsilon",
|
304 |
+
type=float,
|
305 |
+
default=1e-08,
|
306 |
+
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
|
307 |
+
)
|
308 |
+
|
309 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
310 |
+
|
311 |
+
parser.add_argument(
|
312 |
+
"--logging_dir",
|
313 |
+
type=str,
|
314 |
+
default="logs",
|
315 |
+
help=(
|
316 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
317 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
318 |
+
),
|
319 |
+
)
|
320 |
+
parser.add_argument(
|
321 |
+
"--allow_tf32",
|
322 |
+
action="store_true",
|
323 |
+
help=(
|
324 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
325 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
326 |
+
),
|
327 |
+
)
|
328 |
+
|
329 |
+
parser.add_argument(
|
330 |
+
"--report_to",
|
331 |
+
type=str,
|
332 |
+
default="wandb",
|
333 |
+
help=(
|
334 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
335 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
336 |
+
),
|
337 |
+
)
|
338 |
+
|
339 |
+
parser.add_argument(
|
340 |
+
"--mixed_precision",
|
341 |
+
type=str,
|
342 |
+
default=None,
|
343 |
+
choices=["no", "fp16", "bf16"],
|
344 |
+
help=(
|
345 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
346 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
347 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
348 |
+
),
|
349 |
+
)
|
350 |
+
|
351 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
352 |
+
|
353 |
+
parser.add_argument(
|
354 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
355 |
+
)
|
356 |
+
|
357 |
+
parser.add_argument(
|
358 |
+
"--rank",
|
359 |
+
type=int,
|
360 |
+
default=4,
|
361 |
+
help=("The dimension of the LoRA update matrices."),
|
362 |
+
)
|
363 |
+
|
364 |
+
parser.add_argument(
|
365 |
+
"--pretrained_lcm_lora_path",
|
366 |
+
type=str,
|
367 |
+
default="latent-consistency/lcm-lora-sdxl",
|
368 |
+
help=("Path for lcm lora pretrained"),
|
369 |
+
)
|
370 |
+
|
371 |
+
parser.add_argument(
|
372 |
+
"--losses_config_path",
|
373 |
+
type=str,
|
374 |
+
required=True,
|
375 |
+
help=("A yaml file containing losses to use and their weights."),
|
376 |
+
)
|
377 |
+
|
378 |
+
parser.add_argument(
|
379 |
+
"--lcm_every_k_steps",
|
380 |
+
type=int,
|
381 |
+
default=-1,
|
382 |
+
help="How often to run lcm. If -1, lcm is not run."
|
383 |
+
)
|
384 |
+
|
385 |
+
parser.add_argument(
|
386 |
+
"--lcm_batch_size",
|
387 |
+
type=int,
|
388 |
+
default=1,
|
389 |
+
help="Batch size for lcm."
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--lcm_max_timestep",
|
393 |
+
type=int,
|
394 |
+
default=1000,
|
395 |
+
help="Max timestep to use with LCM."
|
396 |
+
)
|
397 |
+
|
398 |
+
parser.add_argument(
|
399 |
+
"--lcm_sample_scale_every_k_steps",
|
400 |
+
type=int,
|
401 |
+
default=-1,
|
402 |
+
help="How often to change lcm scale. If -1, scale is fixed at 1."
|
403 |
+
)
|
404 |
+
|
405 |
+
parser.add_argument(
|
406 |
+
"--lcm_min_scale",
|
407 |
+
type=float,
|
408 |
+
default=0.1,
|
409 |
+
help="When sampling lcm scale, the minimum scale to use."
|
410 |
+
)
|
411 |
+
|
412 |
+
parser.add_argument(
|
413 |
+
"--scale_lcm_by_max_step",
|
414 |
+
action="store_true",
|
415 |
+
help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration"
|
416 |
+
)
|
417 |
+
|
418 |
+
parser.add_argument(
|
419 |
+
"--lcm_sample_full_lcm_prob",
|
420 |
+
type=float,
|
421 |
+
default=0.2,
|
422 |
+
help="When sampling lcm scale, the probability of using full lcm (scale of 1)."
|
423 |
+
)
|
424 |
+
|
425 |
+
parser.add_argument(
|
426 |
+
"--run_on_cpu",
|
427 |
+
action="store_true",
|
428 |
+
help="whether to run on cpu or not"
|
429 |
+
)
|
430 |
+
|
431 |
+
parser.add_argument(
|
432 |
+
"--experiment_name",
|
433 |
+
type=str,
|
434 |
+
help=("A short description of the experiment to add to the wand run log. "),
|
435 |
+
)
|
436 |
+
parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora")
|
437 |
+
|
438 |
+
parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora")
|
439 |
+
|
440 |
+
|
441 |
+
if input_args is not None:
|
442 |
+
args = parser.parse_args(input_args)
|
443 |
+
else:
|
444 |
+
args = parser.parse_args()
|
445 |
+
|
446 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
447 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
448 |
+
args.local_rank = env_local_rank
|
449 |
+
|
450 |
+
args.optimizer = "AdamW"
|
451 |
+
|
452 |
+
return args
|