Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create matlab_cp2tform.py
Browse files- utils/matlab_cp2tform.py +338 -0
utils/matlab_cp2tform.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Tue Jul 11 06:54:28 2017
|
4 |
+
@author: zhaoyafei
|
5 |
+
"""
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from numpy.linalg import inv, norm, lstsq
|
9 |
+
from numpy.linalg import matrix_rank as rank
|
10 |
+
|
11 |
+
class MatlabCp2tormException(Exception):
|
12 |
+
def __str__(self):
|
13 |
+
return 'In File {}:{}'.format(
|
14 |
+
__file__, super.__str__(self))
|
15 |
+
|
16 |
+
def tformfwd(trans, uv):
|
17 |
+
"""
|
18 |
+
Function:
|
19 |
+
----------
|
20 |
+
apply affine transform 'trans' to uv
|
21 |
+
Parameters:
|
22 |
+
----------
|
23 |
+
@trans: 3x3 np.array
|
24 |
+
transform matrix
|
25 |
+
@uv: Kx2 np.array
|
26 |
+
each row is a pair of coordinates (x, y)
|
27 |
+
Returns:
|
28 |
+
----------
|
29 |
+
@xy: Kx2 np.array
|
30 |
+
each row is a pair of transformed coordinates (x, y)
|
31 |
+
"""
|
32 |
+
uv = np.hstack((
|
33 |
+
uv, np.ones((uv.shape[0], 1))
|
34 |
+
))
|
35 |
+
xy = np.dot(uv, trans)
|
36 |
+
xy = xy[:, 0:-1]
|
37 |
+
return xy
|
38 |
+
|
39 |
+
|
40 |
+
def tforminv(trans, uv):
|
41 |
+
"""
|
42 |
+
Function:
|
43 |
+
----------
|
44 |
+
apply the inverse of affine transform 'trans' to uv
|
45 |
+
Parameters:
|
46 |
+
----------
|
47 |
+
@trans: 3x3 np.array
|
48 |
+
transform matrix
|
49 |
+
@uv: Kx2 np.array
|
50 |
+
each row is a pair of coordinates (x, y)
|
51 |
+
Returns:
|
52 |
+
----------
|
53 |
+
@xy: Kx2 np.array
|
54 |
+
each row is a pair of inverse-transformed coordinates (x, y)
|
55 |
+
"""
|
56 |
+
Tinv = inv(trans)
|
57 |
+
xy = tformfwd(Tinv, uv)
|
58 |
+
return xy
|
59 |
+
|
60 |
+
|
61 |
+
def findNonreflectiveSimilarity(uv, xy, options=None):
|
62 |
+
|
63 |
+
options = {'K': 2}
|
64 |
+
|
65 |
+
K = options['K']
|
66 |
+
M = xy.shape[0]
|
67 |
+
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
68 |
+
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
69 |
+
# print('--->x, y:\n', x, y
|
70 |
+
|
71 |
+
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
|
72 |
+
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
|
73 |
+
X = np.vstack((tmp1, tmp2))
|
74 |
+
# print('--->X.shape: ', X.shape
|
75 |
+
# print('X:\n', X
|
76 |
+
|
77 |
+
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
78 |
+
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
79 |
+
U = np.vstack((u, v))
|
80 |
+
# print('--->U.shape: ', U.shape
|
81 |
+
# print('U:\n', U
|
82 |
+
|
83 |
+
# We know that X * r = U
|
84 |
+
if rank(X) >= 2 * K:
|
85 |
+
r, _, _, _ = lstsq(X, U)
|
86 |
+
r = np.squeeze(r)
|
87 |
+
else:
|
88 |
+
raise Exception('cp2tform:twoUniquePointsReq')
|
89 |
+
|
90 |
+
# print('--->r:\n', r
|
91 |
+
|
92 |
+
sc = r[0]
|
93 |
+
ss = r[1]
|
94 |
+
tx = r[2]
|
95 |
+
ty = r[3]
|
96 |
+
|
97 |
+
Tinv = np.array([
|
98 |
+
[sc, -ss, 0],
|
99 |
+
[ss, sc, 0],
|
100 |
+
[tx, ty, 1]
|
101 |
+
])
|
102 |
+
|
103 |
+
# print('--->Tinv:\n', Tinv
|
104 |
+
|
105 |
+
T = inv(Tinv)
|
106 |
+
# print('--->T:\n', T
|
107 |
+
|
108 |
+
T[:, 2] = np.array([0, 0, 1])
|
109 |
+
|
110 |
+
return T, Tinv
|
111 |
+
|
112 |
+
|
113 |
+
def findSimilarity(uv, xy, options=None):
|
114 |
+
|
115 |
+
options = {'K': 2}
|
116 |
+
|
117 |
+
# uv = np.array(uv)
|
118 |
+
# xy = np.array(xy)
|
119 |
+
|
120 |
+
# Solve for trans1
|
121 |
+
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
|
122 |
+
|
123 |
+
# Solve for trans2
|
124 |
+
|
125 |
+
# manually reflect the xy data across the Y-axis
|
126 |
+
xyR = xy
|
127 |
+
xyR[:, 0] = -1 * xyR[:, 0]
|
128 |
+
|
129 |
+
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
|
130 |
+
|
131 |
+
# manually reflect the tform to undo the reflection done on xyR
|
132 |
+
TreflectY = np.array([
|
133 |
+
[-1, 0, 0],
|
134 |
+
[0, 1, 0],
|
135 |
+
[0, 0, 1]
|
136 |
+
])
|
137 |
+
|
138 |
+
trans2 = np.dot(trans2r, TreflectY)
|
139 |
+
|
140 |
+
# Figure out if trans1 or trans2 is better
|
141 |
+
xy1 = tformfwd(trans1, uv)
|
142 |
+
norm1 = norm(xy1 - xy)
|
143 |
+
|
144 |
+
xy2 = tformfwd(trans2, uv)
|
145 |
+
norm2 = norm(xy2 - xy)
|
146 |
+
|
147 |
+
if norm1 <= norm2:
|
148 |
+
return trans1, trans1_inv
|
149 |
+
else:
|
150 |
+
trans2_inv = inv(trans2)
|
151 |
+
return trans2, trans2_inv
|
152 |
+
|
153 |
+
|
154 |
+
def get_similarity_transform(src_pts, dst_pts, reflective=True):
|
155 |
+
"""
|
156 |
+
Function:
|
157 |
+
----------
|
158 |
+
Find Similarity Transform Matrix 'trans':
|
159 |
+
u = src_pts[:, 0]
|
160 |
+
v = src_pts[:, 1]
|
161 |
+
x = dst_pts[:, 0]
|
162 |
+
y = dst_pts[:, 1]
|
163 |
+
[x, y, 1] = [u, v, 1] * trans
|
164 |
+
Parameters:
|
165 |
+
----------
|
166 |
+
@src_pts: Kx2 np.array
|
167 |
+
source points, each row is a pair of coordinates (x, y)
|
168 |
+
@dst_pts: Kx2 np.array
|
169 |
+
destination points, each row is a pair of transformed
|
170 |
+
coordinates (x, y)
|
171 |
+
@reflective: True or False
|
172 |
+
if True:
|
173 |
+
use reflective similarity transform
|
174 |
+
else:
|
175 |
+
use non-reflective similarity transform
|
176 |
+
Returns:
|
177 |
+
----------
|
178 |
+
@trans: 3x3 np.array
|
179 |
+
transform matrix from uv to xy
|
180 |
+
trans_inv: 3x3 np.array
|
181 |
+
inverse of trans, transform matrix from xy to uv
|
182 |
+
"""
|
183 |
+
|
184 |
+
if reflective:
|
185 |
+
trans, trans_inv = findSimilarity(src_pts, dst_pts)
|
186 |
+
else:
|
187 |
+
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
|
188 |
+
|
189 |
+
return trans, trans_inv
|
190 |
+
|
191 |
+
|
192 |
+
def cvt_tform_mat_for_cv2(trans):
|
193 |
+
"""
|
194 |
+
Function:
|
195 |
+
----------
|
196 |
+
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
|
197 |
+
directly used by cv2.warpAffine():
|
198 |
+
u = src_pts[:, 0]
|
199 |
+
v = src_pts[:, 1]
|
200 |
+
x = dst_pts[:, 0]
|
201 |
+
y = dst_pts[:, 1]
|
202 |
+
[x, y].T = cv_trans * [u, v, 1].T
|
203 |
+
Parameters:
|
204 |
+
----------
|
205 |
+
@trans: 3x3 np.array
|
206 |
+
transform matrix from uv to xy
|
207 |
+
Returns:
|
208 |
+
----------
|
209 |
+
@cv2_trans: 2x3 np.array
|
210 |
+
transform matrix from src_pts to dst_pts, could be directly used
|
211 |
+
for cv2.warpAffine()
|
212 |
+
"""
|
213 |
+
cv2_trans = trans[:, 0:2].T
|
214 |
+
|
215 |
+
return cv2_trans
|
216 |
+
|
217 |
+
|
218 |
+
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
|
219 |
+
"""
|
220 |
+
Function:
|
221 |
+
----------
|
222 |
+
Find Similarity Transform Matrix 'cv2_trans' which could be
|
223 |
+
directly used by cv2.warpAffine():
|
224 |
+
u = src_pts[:, 0]
|
225 |
+
v = src_pts[:, 1]
|
226 |
+
x = dst_pts[:, 0]
|
227 |
+
y = dst_pts[:, 1]
|
228 |
+
[x, y].T = cv_trans * [u, v, 1].T
|
229 |
+
Parameters:
|
230 |
+
----------
|
231 |
+
@src_pts: Kx2 np.array
|
232 |
+
source points, each row is a pair of coordinates (x, y)
|
233 |
+
@dst_pts: Kx2 np.array
|
234 |
+
destination points, each row is a pair of transformed
|
235 |
+
coordinates (x, y)
|
236 |
+
reflective: True or False
|
237 |
+
if True:
|
238 |
+
use reflective similarity transform
|
239 |
+
else:
|
240 |
+
use non-reflective similarity transform
|
241 |
+
Returns:
|
242 |
+
----------
|
243 |
+
@cv2_trans: 2x3 np.array
|
244 |
+
transform matrix from src_pts to dst_pts, could be directly used
|
245 |
+
for cv2.warpAffine()
|
246 |
+
"""
|
247 |
+
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
|
248 |
+
cv2_trans = cvt_tform_mat_for_cv2(trans)
|
249 |
+
|
250 |
+
return cv2_trans
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == '__main__':
|
254 |
+
"""
|
255 |
+
u = [0, 6, -2]
|
256 |
+
v = [0, 3, 5]
|
257 |
+
x = [-1, 0, 4]
|
258 |
+
y = [-1, -10, 4]
|
259 |
+
# In Matlab, run:
|
260 |
+
#
|
261 |
+
# uv = [u'; v'];
|
262 |
+
# xy = [x'; y'];
|
263 |
+
# tform_sim=cp2tform(uv,xy,'similarity');
|
264 |
+
#
|
265 |
+
# trans = tform_sim.tdata.T
|
266 |
+
# ans =
|
267 |
+
# -0.0764 -1.6190 0
|
268 |
+
# 1.6190 -0.0764 0
|
269 |
+
# -3.2156 0.0290 1.0000
|
270 |
+
# trans_inv = tform_sim.tdata.Tinv
|
271 |
+
# ans =
|
272 |
+
#
|
273 |
+
# -0.0291 0.6163 0
|
274 |
+
# -0.6163 -0.0291 0
|
275 |
+
# -0.0756 1.9826 1.0000
|
276 |
+
# xy_m=tformfwd(tform_sim, u,v)
|
277 |
+
#
|
278 |
+
# xy_m =
|
279 |
+
#
|
280 |
+
# -3.2156 0.0290
|
281 |
+
# 1.1833 -9.9143
|
282 |
+
# 5.0323 2.8853
|
283 |
+
# uv_m=tforminv(tform_sim, x,y)
|
284 |
+
#
|
285 |
+
# uv_m =
|
286 |
+
#
|
287 |
+
# 0.5698 1.3953
|
288 |
+
# 6.0872 2.2733
|
289 |
+
# -2.6570 4.3314
|
290 |
+
"""
|
291 |
+
u = [0, 6, -2]
|
292 |
+
v = [0, 3, 5]
|
293 |
+
x = [-1, 0, 4]
|
294 |
+
y = [-1, -10, 4]
|
295 |
+
|
296 |
+
uv = np.array((u, v)).T
|
297 |
+
xy = np.array((x, y)).T
|
298 |
+
|
299 |
+
print('\n--->uv:')
|
300 |
+
print(uv)
|
301 |
+
print('\n--->xy:')
|
302 |
+
print(xy)
|
303 |
+
|
304 |
+
trans, trans_inv = get_similarity_transform(uv, xy)
|
305 |
+
|
306 |
+
print('\n--->trans matrix:')
|
307 |
+
print(trans)
|
308 |
+
|
309 |
+
print('\n--->trans_inv matrix:')
|
310 |
+
print(trans_inv)
|
311 |
+
|
312 |
+
print('\n---> apply transform to uv')
|
313 |
+
print('\nxy_m = uv_augmented * trans')
|
314 |
+
uv_aug = np.hstack((
|
315 |
+
uv, np.ones((uv.shape[0], 1))
|
316 |
+
))
|
317 |
+
xy_m = np.dot(uv_aug, trans)
|
318 |
+
print(xy_m)
|
319 |
+
|
320 |
+
print('\nxy_m = tformfwd(trans, uv)')
|
321 |
+
xy_m = tformfwd(trans, uv)
|
322 |
+
print(xy_m)
|
323 |
+
|
324 |
+
print('\n---> apply inverse transform to xy')
|
325 |
+
print('\nuv_m = xy_augmented * trans_inv')
|
326 |
+
xy_aug = np.hstack((
|
327 |
+
xy, np.ones((xy.shape[0], 1))
|
328 |
+
))
|
329 |
+
uv_m = np.dot(xy_aug, trans_inv)
|
330 |
+
print(uv_m)
|
331 |
+
|
332 |
+
print('\nuv_m = tformfwd(trans_inv, xy)')
|
333 |
+
uv_m = tformfwd(trans_inv, xy)
|
334 |
+
print(uv_m)
|
335 |
+
|
336 |
+
uv_m = tforminv(trans, xy)
|
337 |
+
print('\nuv_m = tforminv(trans, xy)')
|
338 |
+
print(uv_m)
|