liptotext / app.py
Suprath's picture
Update app.py
d1cebce verified
raw
history blame
8.1 kB
import os
import sys
import dlib
import cv2
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from argparse import Namespace
import fairseq
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr
from pytube import YouTube
# ---- Download AV-HuBERT and install dependencies ----
os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')
sys.path.append('/home/user/app/av_hubert/avhubert')
# ---- Load AV-HuBERT models and setup Gradio interface ----
user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = "/home/user/app/video"
ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
saved_cfg.task.modalities = modalities
saved_cfg.task.data = data_dir
saved_cfg.task.label_dir = data_dir
task = tasks.setup_task(saved_cfg.task)
generator = task.build_generator(models, gen_cfg)
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print("Success download video")
print(abs_video_path)
return abs_video_path
def detect_landmark(image, detector, predictor):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
face_locations = detector(gray, 1)
coords = None
for (_, face_location) in enumerate(face_locations):
if torch.cuda.is_available():
rect = face_location.rect
else:
rect = face_location
shape = predictor(gray, rect)
coords = np.zeros((68, 2), dtype=np.int32)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
def preprocess_video(input_video_path):
if torch.cuda.is_available():
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
else:
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(face_predictor_path)
STD_SIZE = (256, 256)
mean_face_landmarks = np.load(mean_face_path)
stablePntsIDs = [33, 36, 39, 42, 45]
videogen = skvideo.io.vread(input_video_path)
frames = np.array([frame for frame in videogen])
landmarks = []
for frame in tqdm(frames):
landmark = detect_landmark(frame, detector, predictor)
landmarks.append(landmark)
preprocessed_landmarks = landmarks_interpolate(landmarks)
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
return mouth_roi_path
def extract_word_timings(hypo):
words = hypo.split()
word_timings = [(idx * 0.04, word) for idx, word in enumerate(words)]
return word_timings
def save_word_timings(word_timings, output_file):
with open(output_file, "w") as f:
for timing, word in word_timings:
f.write(f"{timing:.2f}\t{word}\n")
def predict(process_video):
num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
label_cont = ["DUMMY\n"]
with open(f"{data_dir}/test.tsv", "w") as fo:
fo.write("".join(tsv_cont))
with open(f"{data_dir}/test.wrd", "w") as fo:
fo.write("".join(label_cont))
task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
def decode_fn(x):
dictionary = task.target_dictionary
symbols_ignore = generator.symbols_to_strip_from_output
symbols_ignore.add(dictionary.pad())
return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
sample = next(itr)
if torch.cuda.is_available():
sample = utils.move_to_cuda(sample)
hypos = task.inference_step(generator, models, sample)
ref = decode_fn(sample['target'][0].int().cpu())
hypo = hypos[0][0]['tokens'].int().cpu()
hypo = decode_fn(hypo)
# Extract word timings
word_timings = extract_word_timings(hypo)
# Save word timings to a txt file
output_file = "/home/user/app/av_hubert/avhubert/word_timings.txt"
save_word_timings(word_timings, output_file)
return hypo
# ---- Gradio Layout -----
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()
with demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Speech Recognition from Visual Lip Movement by Audio-Visual Hidden Unit BERT Model (AV-HuBERT)</h1>
This space uses AV-HuBERT models from <a href='https://github.com/facebookresearch' target='_blank'><b>Meta Research</b></a> to recoginze the speech from Lip Movement 🤗
<figure>
<img src="https://huggingface.co/vumichien/AV-HuBERT/resolve/main/lipreading.gif" alt="Audio-Visual Speech Recognition">
<figcaption> Speech Recognition from visual lip movement
</figcaption>
</figure>
</div>
''')
gr.Markdown('''
### Reading Lip movement with youtube link using Avhubert
##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
##### Step 1b. You also can upload video directly
##### Step 2. Generating landmarks surrounding mouth area
##### Step 3. Reading lip movement.
''')
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=[
"https://www.youtube.com/watch?v=ZXVDnuepW2s",
"https://www.youtube.com/watch?v=X8_glJn1B8o",
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
label="Examples", inputs=[youtube_url_in])
youtube_url_in.render()
download_youtube_btn = gr.Button("Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
detect_landmark_btn = gr.Button("Detect landmark")
detect_landmark_btn.click(preprocess_video, [video_in], [video_out])
predict_btn = gr.Button("Predict")
predict_btn.click(predict, [video_out], [text_output])
video_in.render()
video_out.render()
text_output.render()
# Download button for word timings file
download_word_timings_btn = gr.Download(label="Download Word Timings")
download_word_timings_btn.click(lambda: "/home/user/app/av_hubert/avhubert/word_timings.txt")
demo.launch(debug=True)