Svngoku's picture
Update app.py
66791db verified
raw
history blame
7.04 kB
import ast
import pandas as pd
import gradio as gr
import litellm
import plotly.express as px
from collections import defaultdict
from datetime import datetime
import os
os.environ['DEEPSEEK_API_KEY']
def preprocess_dataset(test_data):
"""
Preprocess the dataset to convert the 'choices' field from a string to a list of strings.
"""
preprocessed_data = []
for example in test_data:
if isinstance(example['choices'], str):
choices_str = example['choices']
if choices_str.startswith("'") and choices_str.endswith("'"):
choices_str = choices_str[1:-1]
elif choices_str.startswith('"') and choices_str.endswith('"'):
choices_str = choices_str[1:-1]
choices_str = choices_str.replace("\\'", "'")
try:
example['choices'] = ast.literal_eval(choices_str)
except (ValueError, SyntaxError):
print(f"Error parsing choices: {choices_str}")
continue
preprocessed_data.append(example)
return preprocessed_data
def evaluate_afrimmlu(test_data, model_name="deepseek-chat"):
"""
Evaluate the model on the AfriMMLU dataset.
"""
results = []
correct = 0
total = 0
subject_results = defaultdict(lambda: {"correct": 0, "total": 0})
for example in test_data:
question = example['question']
choices = example['choices']
answer = example['answer']
subject = example['subject']
prompt = (
f"Answer the following multiple-choice question. "
f"Return only the letter corresponding to the correct answer (A, B, C, or D).\n"
f"Question: {question}\n"
f"Options:\n"
f"A. {choices[0]}\n"
f"B. {choices[1]}\n"
f"C. {choices[2]}\n"
f"D. {choices[3]}\n"
f"Answer:"
)
try:
response = litellm.completion(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
model_output = response.choices[0].message.content.strip().upper()
model_answer = None
for char in model_output:
if char in ['A', 'B', 'C', 'D']:
model_answer = char
break
is_correct = model_answer == answer.upper()
if is_correct:
correct += 1
subject_results[subject]["correct"] += 1
total += 1
subject_results[subject]["total"] += 1
# Store detailed results
results.append({
'timestamp': datetime.now().isoformat(),
'subject': subject,
'question': question,
'model_answer': model_answer,
'correct_answer': answer.upper(),
'is_correct': is_correct,
'total_tokens': response.usage.total_tokens
})
except Exception as e:
print(f"Error processing question: {str(e)}")
continue
# Calculate accuracies
accuracy = (correct / total * 100) if total > 0 else 0
subject_accuracy = {
subject: (stats["correct"] / stats["total"] * 100) if stats["total"] > 0 else 0
for subject, stats in subject_results.items()
}
# Export results to CSV
df = pd.DataFrame(results)
df.to_csv('detailed_results.csv', index=False)
# Export summary to CSV
summary_data = [{'subject': subject, 'accuracy': acc}
for subject, acc in subject_accuracy.items()]
summary_data.append({'subject': 'Overall', 'accuracy': accuracy})
pd.DataFrame(summary_data).to_csv('summary_results.csv', index=False)
return {
"accuracy": accuracy,
"subject_accuracy": subject_accuracy,
"detailed_results": results
}
def create_visualization(results_dict):
"""
Create visualization from evaluation results.
"""
summary_data = [
{'Subject': subject, 'Accuracy (%)': accuracy}
for subject, accuracy in results_dict['subject_accuracy'].items()
]
summary_data.append({'Subject': 'Overall', 'Accuracy (%)': results_dict['accuracy']})
summary_df = pd.DataFrame(summary_data)
fig = px.bar(
summary_df,
x='Subject',
y='Accuracy (%)',
title='AfriMMLU Evaluation Results',
labels={'Subject': 'Subject', 'Accuracy (%)': 'Accuracy (%)'}
)
fig.update_layout(
xaxis_tickangle=-45,
showlegend=False,
height=600
)
return summary_df, fig
def evaluate_and_display(test_file, model_name):
# Load and preprocess data
test_data = pd.read_json(test_file.name)
preprocessed_data = preprocess_dataset(test_data.to_dict('records'))
# Run evaluation
results = evaluate_afrimmlu(preprocessed_data, model_name)
# Create visualizations
summary_df, plot = create_visualization(results)
# Load detailed results with error handling
try:
detailed_df = pd.read_csv('detailed_results.csv')
except (FileNotFoundError, pd.errors.EmptyDataError):
detailed_df = pd.DataFrame(results["detailed_results"])
return summary_df, plot, detailed_df
def create_gradio_interface():
"""
Create and configure the Gradio interface.
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# AfriMMLU Evaluation Dashboard
Upload your test data and select a model to evaluate performance on the AfriMMLU benchmark.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Test Data (JSON)",
file_types=[".json"]
)
model_input = gr.Dropdown(
choices=["deepseek/deepseek-chat"],
label="Select Model",
value="deepseek/deepseek-chat"
)
evaluate_btn = gr.Button("Evaluate", variant="primary")
with gr.Row():
with gr.Column():
summary_table = gr.Dataframe(
headers=["Subject", "Accuracy (%)"],
label="Summary Results"
)
with gr.Row():
with gr.Column():
summary_plot = gr.Plot(label="Performance by Subject")
with gr.Row():
with gr.Column():
detailed_results = gr.Dataframe(
label="Detailed Results",
wrap=True
)
evaluate_btn.click(
fn=evaluate_and_display,
inputs=[file_input, model_input],
outputs=[summary_table, summary_plot, detailed_results]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)