DI-PCG / scripts /prepare_data.py
thuzhaowang's picture
fix config
5e17843
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import numpy as np
import cv2
import gin
import bpy
import gc
import logging
import time
import argparse
from pathlib import Path
import importlib
import json
import copy
import imgaug
import imgaug.augmenters as iaa
from core.utils.io import read_list_from_txt
from multiprocessing import Pool
import torch
from core.utils.dinov2 import Dinov2Model
logging.basicConfig(
format="[%(asctime)s.%(msecs)03d] [%(module)s] [%(levelname)s] | %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
import infinigen
from infinigen.core import init, surface
from infinigen.assets.utils.decorate import read_co
from infinigen.assets.utils.misc import assign_material
from infinigen.core.util import blender as butil
from infinigen.assets.lighting import (
hdri_lighting,
holdout_lighting,
sky_lighting,
three_point_lighting,
)
from core.utils.camera import convert_sphere_to_xyz, setup_camera
from core.utils.vis_utils import colorObj, setMat_plastic
# augment
color_aug = iaa.Sequential([
# color aug
iaa.WithBrightnessChannels(iaa.Add((-50, 50))),
iaa.GammaContrast((0.7, 1.5), per_channel=True),
iaa.AddToHueAndSaturation((-60, 60)),
iaa.Grayscale((0.0, 0.8)),
])
flip_aug = iaa.Sequential([iaa.Fliplr(0.5)])
crop_aug = iaa.Sequential([
iaa.CropAndPad(percent=(-0.1, 0.1), pad_mode='constant', pad_cval=(0, 0), keep_size=False),
iaa.CropToFixedSize(height=256, width=256),
iaa.PadToFixedSize(height=256, width=256)
])
crop_resize_aug = iaa.KeepSizeByResize(iaa.Crop(percent=(0, 0.1), sample_independently=False, keep_size=False))
def aug(name, save_root, num_aug, flip=True, crop=True):
"""Do the augmentation to RGBA image
"""
id, name = name.split("/")
img_rgba = cv2.imread(os.path.join(save_root, id, name), -1) # rgba
img = cv2.cvtColor(img_rgba[:,:,:3], cv2.COLOR_BGR2RGB)
img = np.concatenate([img, img_rgba[:,:,3:]], axis=2) # rgba
save_dir = os.path.join(save_root, id)
os.makedirs(save_dir, exist_ok=True)
for j in range(num_aug):
# do the augmentation here
image, mask = copy.deepcopy(img[:,:,:3]), copy.deepcopy(img[:,:,3:])
# aug color
if np.random.rand() < 0.8:
image = color_aug(image=image)
# flip
if flip:
image = flip_aug(image=np.concatenate([image, mask], axis=-1))
else:
image = np.concatenate([image, mask], axis=-1)
# crop
if crop:
if np.random.rand() < 0.5:
# crop & pad
image = crop_aug(image=image)
else:
# crop & resize
image = crop_resize_aug(image=image)
if np.random.rand() < 0.1:
# binary image using mask
image, mask = image[:, :, :3], image[:, :, 3:]
# black image
image = np.tile(255 * (1.0 - (mask > 0)), (1,1,3)).astype(np.uint8)
image = np.concatenate([image, mask], axis=-1)
if np.random.rand() < 0.2:
image, mask = image[:, :, :3], image[:, :, 3:]
edge = np.expand_dims(cv2.Canny(mask, 100, 200), -1)
mask = (edge > 0).astype(np.uint8)
# convert edge into black
edge = 255 * (1.0 - mask)
image = np.tile(edge, (1,1,3)).astype(np.uint8)
image = np.concatenate([image, mask], axis=-1)
# save
save_name = os.path.join(save_dir, "{}_aug_{}.png".format(name[:-4], j))
cv2.imwrite(save_name, image)
print(name)
def randomize_params(params_dict):
# Initialize the parameters
selected_params = {}
for key, value in params_dict.items():
if value[0] == 'continuous':
min_v, max_v = value[1][0], value[1][1]
selected_params[key] = np.random.uniform(min_v, max_v)
elif value[0] == 'discrete':
choice_list = value[1]
selected_params[key] = np.random.choice(choice_list)
else:
raise NotImplementedError
return selected_params
def generate(generator, params, seed, save_dir=None, save_name=None,
save_blend=False, save_img=False, save_untexture_img=False, save_gif=False, save_mesh=False,
cam_dists=[], cam_elevations=[], cam_azimuths=[], zoff=0,
resolution='256x256', sample=100, no_mod=False, no_ground=True,
window=None, screen=None):
print("Generating")
# reset to default
bpy.ops.wm.read_homefile(app_template="")
butil.clear_scene()
# Suppress info messages
bpy.ops.outliner.orphans_purge()
gc.collect()
# configurate infinigen
gin.add_config_file_search_path("configs/infinigen")
gin.parse_config_files_and_bindings(
["configs/infinigen/base.gin"],
bindings=[],
skip_unknown=True,
finalize_config=False,
)
surface.registry.initialize_from_gin()
# setup the scene
scene = bpy.context.scene
scene.render.engine = "CYCLES"
scene.cycles.device = "GPU"
scene.render.film_transparent = True
bpy.context.preferences.system.scrollback = 0
bpy.context.preferences.edit.undo_steps = 0
prefs = bpy.context.preferences.addons["cycles"].preferences
for dt in prefs.get_device_types(bpy.context):
prefs.get_devices_for_type(dt[0])
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = "CUDA"
use_devices = [d for d in prefs.devices if d.type == "CUDA"]
for d in prefs.devices:
d.use = False
for d in use_devices:
d.use = True
scene.render.resolution_x, scene.render.resolution_y = map(
int, resolution.split("x")
)
scene.cycles.samples = sample
bpy.context.scene.render.use_persistent_data = True
bpy.context.scene.world.node_tree.nodes["Background"].inputs[0].default_value[0:3] = (0.0, 0.0, 0.0)
# update the parameters
generator.update_params(params)
# generate the object
asset = generator.spawn_asset(seed)
generator.finalize_assets(asset)
parent = asset
if asset.type == "EMPTY":
meshes = [o for o in asset.children_recursive if o.type == "MESH"]
sizes = []
for m in meshes:
co = read_co(m)
sizes.append((np.amax(co, 0) - np.amin(co, 0)).sum())
i = np.argmax(np.array(sizes))
asset = meshes[i]
if not no_mod:
if parent.animation_data is not None:
drivers = parent.animation_data.drivers.values()
for d in drivers:
parent.driver_remove(d.data_path)
co = read_co(asset)
x_min, x_max = np.amin(co, 0), np.amax(co, 0)
parent.location = -(x_min[0] + x_max[0]) / 2, -(x_min[1] + x_max[1]) / 2, 0
butil.apply_transform(parent, loc=True)
if not no_ground:
bpy.ops.mesh.primitive_grid_add(
size=5, x_subdivisions=400, y_subdivisions=400
)
plane = bpy.context.active_object
plane.location[-1] = x_min[-1]
plane.is_shadow_catcher = True
material = bpy.data.materials.new("plane")
material.use_nodes = True
material.node_tree.nodes["Principled BSDF"].inputs[0].default_value = (
0.015,
0.009,
0.003,
1,
)
assign_material(plane, material)
if save_blend:
# visualize the generated model by rendering
butil.save_blend(f"{save_dir}/{save_name}.blend", autopack=True)
# render image
if save_img:
sky_lighting.add_lighting()
scene.render.image_settings.file_format = "PNG"
scene.render.image_settings.color_mode = "RGBA"
nodes = bpy.data.worlds["World"].node_tree.nodes
sky_texture = [n for n in nodes if n.name.startswith("Sky Texture")][-1]
sky_texture.sun_elevation = np.deg2rad(60)
sky_texture.sun_rotation = np.pi * 0.75
for cd in cam_dists:
for ce in cam_elevations:
for ca in cam_azimuths:
save_name_full = f"{save_name}_{cd}_{ce}_{ca}"
cam_data = convert_sphere_to_xyz(cd, ce, ca)
cam_location, cam_rot = cam_data[:3], cam_data[3:]
cam_location[-1] += zoff # TODO: fix the table case
camera = setup_camera(cam_location=cam_location, cam_rot=cam_rot)
cam_info_ng = bpy.data.node_groups.get("nodegroup_active_cam_info")
if cam_info_ng is not None:
cam_info_ng.nodes["Object Info"].inputs["Object"].default_value = camera
image_path = str(f"{save_dir}/{save_name_full}_texture.png")
scene.render.filepath = image_path
bpy.ops.render.render(write_still=True)
# render untextured object
if save_untexture_img:
bpy.ops.object.shade_smooth()
asset.data.materials.clear()
# untextured model
#RGBA = (144.0/255, 210.0/255, 236.0/255, 1)
RGBA = (192.0/255, 192.0/255, 192.0/255, 1)
meshColor = colorObj(RGBA, 0.5, 1.0, 1.0, 0.0, 2.0)
setMat_plastic(asset, meshColor)
image_path = str(f"{save_dir}/{save_name_full}_geometry.png")
scene.render.filepath = image_path
bpy.ops.render.render(write_still=True)
# render gif of object rotating
if save_gif:
save_gif_dir = os.path.join(save_dir, "gif")
os.makedirs(save_gif_dir, exist_ok=True)
bpy.context.scene.frame_end = 60
asset_parent = asset if asset.parent is None else asset.parent
asset_parent.driver_add("rotation_euler")[-1].driver.expression = f"frame/{60 / (2 * np.pi * 1)}"
imgpath = str(f"{save_gif_dir}/{save_name}_###.png")
scene.render.filepath = str(imgpath)
bpy.ops.render.render(animation=True)
from core.utils.io import make_gif
all_imgpaths = [str(os.path.join(save_gif_dir, p)) for p in sorted(os.listdir(save_gif_dir)) if p.endswith('.png')]
make_gif(f"{save_gif_dir}/{save_name}.gif", all_imgpaths)
# dump mesh model
if save_mesh:
save_mesh_filepath = os.path.join(save_dir, save_name+".glb")
bpy.ops.export_scene.gltf(filepath=save_mesh_filepath)
print("Mesh saved in {}".format(save_mesh_filepath))
return asset, image_path
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument('--generator', type=str, default='ChairFactory',
help='Supported generator: [ChairFactory, VaseFactory, TableDiningFactory, BasketBaseFactory, FlowerFactory, DandelionFactory]')
argparser.add_argument('--save_root', type=str, required=True)
argparser.add_argument('--total_num', type=int, default=20000)
argparser.add_argument('--aug_num', type=int, default=5)
argparser.add_argument('--batch_size', type=int, default=1000)
argparser.add_argument('--seed', type=int, default=0)
args = argparser.parse_args()
# setup
"""Training image rendering settings
Chair: cam_dists - [1.8, 2.0], elevations: [50, 60, 80], azimuths: [0, 30, 60, 80], zoff: 0.0
Vase: cam_dists - [1.2, 1.6, 2.0], elevations: [60, 80, 90], azimuths: [0], zoff: 0.3
Table: cam_dists - [5.0, 6.0], elevations: [60, 70], azimuths: [0, 30, 60], zoff: 0.1
Flower: cam_dists - [3.0, 4.0], elevations: [20, 30, 50, 60], azimuths: [0], zoff: 0
Dandelion: cam_dists - [3.0], elevations: [90], azimuths: [0], zoff: 0.5
Basket: cam_dists - [1.2, 1.6], elevations: [50, 60, 70], azimuths: [30, 60], zoff: 0.0
"""
np.random.seed(args.seed)
flip, crop = True, True
# Different training data rendering settings for different generators to improve efficiency
if args.generator == "ChairFactory":
cam_dists = [1.8, 2.0]
elevations = [50, 60, 80]
azimuths = [0, 30, 60, 80]
zoff = 0.0
elif args.generator == "TableDiningFactory":
cam_dists = [5.0, 6.0]
elevations = [60, 70]
azimuths = [0, 30, 60, 90]
zoff = 0.1
elif args.generator == "VaseFactory":
cam_dists = [1.2, 1.6, 2.0]
elevations = [60, 80, 90]
azimuths = [0]
zoff = 0.3
elif args.generator == "BasketBaseFactory":
cam_dists = [1.2, 1.6]
elevations = [50, 60, 70]
azimuths = [30, 60]
zoff = 0.0
elif args.generator == "FlowerFactory":
cam_dists = [2.0, 3.0, 4.0]
elevations = [30, 50, 60, 80]
azimuths = [0]
zoff = 0
elif args.generator == "DandelionFactory":
cam_dists = [3.0]
elevations = [90]
azimuths = [0]
zoff = 0.5
flip = False
os.makedirs(args.save_root, exist_ok=True)
train_ratio = 0.9
sample = 100
resolution = '256x256'
# load the Blender procedural generator
OBJECTS_PATH = Path("./core/assets/")
assert OBJECTS_PATH.exists(), OBJECTS_PATH
generator = None
for subdir in sorted(list(OBJECTS_PATH.iterdir())):
clsname = subdir.name.split(".")[0].strip()
with gin.unlock_config():
module = importlib.import_module(f"core.assets.{clsname}")
if hasattr(module, args.generator):
generator = getattr(module, args.generator)
logger.info(f"Found {args.generator} in {subdir}")
break
logger.debug(f"{args.generator} not found in {subdir}")
if generator is None:
raise ModuleNotFoundError(f"{args.generator} not Found.")
gen = generator(args.seed)
# save params dict file
params_dict_file = f"{args.save_root}/params_dict.txt"
json.dump(gen.params_dict, open(params_dict_file, "w"))
# generate data main loop
for i in range(args.total_num):
# sample parameters
params = randomize_params(gen.params_dict)
# fix dependent parameters
params_fix_unused = gen.fix_unused_params(params)
save_name = f"{i:05d}"
save_dir = f"{args.save_root}/{save_name}"
os.makedirs(save_dir, exist_ok=True)
# generate and save rendering - for training data, skip the blend file to save storage
if i < args.total_num * train_ratio:
save_blend = False
else:
save_blend = True
asset, img_path = generate(gen, params_fix_unused, args.seed, save_dir=save_dir, save_name=save_name,
save_blend=save_blend, save_img=True, cam_dists=cam_dists,
cam_elevations=elevations, cam_azimuths=azimuths, zoff=zoff, sample=sample, resolution=resolution)
# save the parameters
json.dump(params_fix_unused, open(f"{save_dir}/params.txt", "w"), default=str)
if i % 100 == 0:
logger.info(f"{i} / {args.total_num} finished")
# write filelist
f = open(os.path.join(args.save_root, "train_list_mv.txt"), "w")
total_num = args.total_num
for i in range(int(total_num * train_ratio)):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
f.close()
f = open(os.path.join(args.save_root, "test_list_mv.txt"), "w")
for i in range(int(total_num * train_ratio), total_num):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
f.close()
# do the augmentation
# main loop
image_list = read_list_from_txt(os.path.join(args.save_root, "train_list_mv.txt"))
print("Augmenting...Total data: {}".format(len(image_list)))
p = Pool(16)
for i, name in enumerate(image_list):
p.apply_async(aug, args=(name, args.save_root, args.aug_num, flip, crop))
p.close()
p.join()
# write the new list
f = open(os.path.join(args.save_root, "train_list_mv_withaug.txt"), "w")
for i in range(int(total_num * train_ratio)):
for cam_dist in cam_dists:
for elevation in elevations:
for azimuth in azimuths:
f.write(
"{:05d}/{:05d}_{}_{}_{}.png\n".format(
i, i, cam_dist, elevation, azimuth
)
)
for j in range(args.aug_num):
f.write(
"{:05d}/{:05d}_{}_{}_{}_aug_{}.png\n".format(
i, i, cam_dist, elevation, azimuth, j
)
)
f.close()
# extract features
# Setup PyTorch:
torch.manual_seed(0)
torch.set_grad_enabled(False)
dinov2_model = Dinov2Model()
# read image paths
with open(os.path.join(args.save_root, "train_list_mv_withaug.txt"), "r") as f:
image_paths = f.readlines()
with open(os.path.join(args.save_root, "test_list_mv.txt"), "r") as f:
test_image_paths = f.readlines()
image_paths = image_paths + test_image_paths
image_paths = [os.path.join(args.save_root, path.strip()) for path in image_paths]
print(f"Number of images: {len(image_paths)}")
for i in range(0, len(image_paths), args.batch_size):
batch_paths = image_paths[i:i + args.batch_size]
# pre-process the image - RGBA to RGB with white background
batch_images = []
for path in batch_paths:
image = cv2.imread(path, -1)
mask = (image[...,-1:] > 0)
image_rgb = cv2.cvtColor(image[...,:3], cv2.COLOR_BGR2RGB)
# resize if not 256
if image.shape[0] != 256 or image.shape[1] != 256:
image_rgb = cv2.resize(image_rgb, (256, 256), interpolation=cv2.INTER_NEAREST)
mask = cv2.resize((255 * mask[:,:,0]).astype(np.uint8), (256, 256), interpolation=cv2.INTER_NEAREST)
mask = (mask > 128)[:,:,None]
# convert the transparent pixels to white background
image_whiteback = image_rgb * mask + 255 * (1 - mask)
batch_images.append(np.array(image_whiteback).astype(np.uint8))
batch_features = dinov2_model.encode_batch_imgs(batch_images, global_feat=False).detach().cpu().numpy()
save_paths = [p.replace(".png", "_dino_token.npz") for p in batch_paths]
# save the features
for save_path, feature in zip(save_paths, batch_features):
np.savez_compressed(save_path, feature)
print(f"Extracted features for {i} images.")