Spaces:
Runtime error
Runtime error
File size: 2,061 Bytes
854fe03 ce881ac 627604b 854fe03 7593243 854fe03 9dc50fd 854fe03 7bd4481 854fe03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
import numpy as np
import string
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import tensorflow as tf
from tensorflow import keras
from keras import layers
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import load_model
from joblib import load
import pickle
nltk.download('stopwords')
nltk.download('omw-1.4')
nltk.download('wordnet')
nltk.download('punkt')
try:
model = load_model('shubham_english_text_model.h5')
except ValueError as e:
print(f"Error: {e}")
with open('shubham_english_text_tokenizer.pkl', 'rb') as handle:
tokenizer = pickle.load(handle)
def preprocess(text, tokenizer):
lemmatizer = WordNetLemmatizer()
vocab = set()
stop_words = set(stopwords.words('english'))
tokens = word_tokenize(text)
tokens = [word for word in tokens if word.lower() not in stop_words and word not in string.punctuation]
tokens = [lemmatizer.lemmatize(word.lower()) for word in tokens]
vocab.update(tokens)
preprocessed_text = ' '.join(tokens)
X = tokenizer.texts_to_sequences(preprocessed_text)
max_len = max(len(y) for y in X)
X = pad_sequences(X, maxlen=max_len)
return X
def predict(text):
X = preprocess(text, tokenizer)
pred = model.predict(X)
probabilities = np.mean(pred, axis=0)
final_class = np.argmax(probabilities)
if final_class == 0:
prediction = "The string is classified as hate speech."
else:
prediction = "The string is classified as normal speech."
return prediction, probabilities.tolist()
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Probabilities")],
title="Hate Speech Classifier",
description="A classifier to detect hate speech in a given text.",
)
if __name__ == "__main__":
iface.launch() |