Spaces:
Runtime error
Runtime error
# This Gradio app uses the KolorsPipeline from the diffusers library to generate images based on a given prompt. | |
import gradio as gr | |
import torch | |
from diffusers import KolorsPipeline | |
# Load the KolorsPipeline model | |
pipe = KolorsPipeline.from_pretrained( | |
"Kwai-Kolors/Kolors-diffusers", | |
torch_dtype=torch.float16, | |
variant="fp16" | |
).to("cuda") | |
# Define the function to generate an image based on the prompt | |
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps, seed): | |
generator = torch.Generator(pipe.device).manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
).images[0] | |
return image | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Prompt", value="一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着'可图'") | |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="") | |
with gr.Row(): | |
guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, value=5.0, step=0.1) | |
num_inference_steps_slider = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=100, value=50, step=1) | |
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=100000, value=66, step=1) | |
generate_button = gr.Button("Generate Image") | |
output_image = gr.Image(label="Generated Image") | |
# Define the event listener for the generate button | |
generate_button.click( | |
fn=generate_image, | |
inputs=[prompt_input, negative_prompt_input, guidance_scale_slider, num_inference_steps_slider, seed_slider], | |
outputs=output_image | |
) | |
# Launch the Gradio app | |
demo.launch(show_error=True) |