Spaces:
Running
Running
import streamlit as st | |
from sklearn.linear_model import LinearRegression | |
import pickle | |
import numpy as np | |
# Load the pre-trained model and scaler | |
with open('regression_model.pkl', 'rb') as model_file: | |
model = pickle.load(model_file) | |
with open('scaler.pkl', 'rb') as scaler_file: | |
scaler = pickle.load(scaler_file) | |
# Streamlit Input Fields | |
st.title("Boston Housing Pred App ⌨🏠") | |
crim = st.number_input("Enter the crim", value=0.0) | |
zn = st.number_input("Enter the zn", value=0.0) | |
indus = st.number_input("Enter the indus", value=0.0) | |
chas = st.number_input("Enter the chas", value=0.0) | |
nox = st.number_input("Enter the nox", value=0.0) | |
rm = st.number_input("Enter the rm", value=0.0) | |
age = st.number_input("Enter your age", value=0.0) | |
dis = st.number_input("Enter the dis", value=0.0) | |
rad = st.number_input("Enter the rad", value=0.0) | |
ptratio = st.number_input("Enter the ptratio", value=0.0) | |
b = st.number_input("Enter B", value=0.0) | |
istat = st.number_input("Enter istat", value=0.0) | |
tax = st.number_input("Enter tax", value=0.0) | |
# Predict when button is pressed | |
if st.button("Predict"): | |
# Prepare the input data | |
input_data = np.array([[crim,zn, indus, chas, nox, rm, age, dis, rad, ptratio, b, istat, tax]]) | |
# Scale the input data | |
input_data_scaled = scaler.transform(input_data) | |
# Make the prediction | |
result = model.predict(input_data_scaled) | |
# Display the prediction | |
st.write(f"The predicted result is: {result[0]:.2f}$") | |