Spaces:
Starting
on
A10G
Starting
on
A10G
import time | |
from typing import List, Optional, Union, Any, Dict, Tuple, Literal | |
import sys, os | |
sys.path.append(os.path.dirname(os.path.dirname(__file__))) | |
sys.path.append(os.path.dirname(__file__)) | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import LCMScheduler, StableDiffusionPipeline | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import ( | |
retrieve_latents, | |
) | |
from streamdiffusion.image_filter import SimilarImageFilter | |
class StreamDiffusion: | |
def __init__( | |
self, | |
pipe: StableDiffusionPipeline, | |
t_index_list: List[int], | |
torch_dtype: torch.dtype = torch.float16, | |
width: int = 512, | |
height: int = 512, | |
do_add_noise: bool = True, | |
use_denoising_batch: bool = True, | |
frame_buffer_size: int = 1, | |
cfg_type: Literal["none", "full", "self", "initialize"] = "self", | |
) -> None: | |
self.device = pipe.device | |
self.dtype = torch_dtype | |
self.generator = None | |
self.height = height | |
self.width = width | |
self.latent_height = int(height // pipe.vae_scale_factor) | |
self.latent_width = int(width // pipe.vae_scale_factor) | |
self.frame_bff_size = frame_buffer_size | |
self.denoising_steps_num = len(t_index_list) | |
self.cfg_type = cfg_type | |
if use_denoising_batch: | |
self.batch_size = self.denoising_steps_num * frame_buffer_size | |
if self.cfg_type == "initialize": | |
self.trt_unet_batch_size = ( | |
self.denoising_steps_num + 1 | |
) * self.frame_bff_size | |
elif self.cfg_type == "full": | |
self.trt_unet_batch_size = ( | |
2 * self.denoising_steps_num * self.frame_bff_size | |
) | |
else: | |
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size | |
else: | |
self.trt_unet_batch_size = self.frame_bff_size | |
self.batch_size = frame_buffer_size | |
self.t_list = t_index_list | |
self.do_add_noise = do_add_noise | |
self.use_denoising_batch = use_denoising_batch | |
self.similar_image_filter = False | |
self.similar_filter = SimilarImageFilter() | |
self.prev_image_result = None | |
self.pipe = pipe | |
self.image_processor = VaeImageProcessor(pipe.vae_scale_factor) | |
self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
self.text_encoder = pipe.text_encoder | |
self.unet = pipe.unet | |
self.vae = pipe.vae | |
self.inference_time_ema = 0 | |
def load_lcm_lora( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[ | |
str, Dict[str, torch.Tensor] | |
] = "latent-consistency/lcm-lora-sdv1-5", | |
adapter_name: Optional[Any] = None, | |
**kwargs, | |
) -> None: | |
self.pipe.load_lora_weights( | |
pretrained_model_name_or_path_or_dict, adapter_name, **kwargs | |
) | |
def load_lora( | |
self, | |
pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
adapter_name: Optional[Any] = None, | |
**kwargs, | |
) -> None: | |
self.pipe.load_lora_weights( | |
pretrained_lora_model_name_or_path_or_dict, adapter_name, **kwargs | |
) | |
def fuse_lora( | |
self, | |
fuse_unet: bool = True, | |
fuse_text_encoder: bool = True, | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
) -> None: | |
self.pipe.fuse_lora( | |
fuse_unet=fuse_unet, | |
fuse_text_encoder=fuse_text_encoder, | |
lora_scale=lora_scale, | |
safe_fusing=safe_fusing, | |
) | |
def enable_similar_image_filter(self, threshold: float = 0.98, max_skip_frame: float = 10) -> None: | |
self.similar_image_filter = True | |
self.similar_filter.set_threshold(threshold) | |
self.similar_filter.set_max_skip_frame(max_skip_frame) | |
def disable_similar_image_filter(self) -> None: | |
self.similar_image_filter = False | |
def prepare( | |
self, | |
prompt: str, | |
negative_prompt: str = "", | |
num_inference_steps: int = 50, | |
guidance_scale: float = 1.2, | |
delta: float = 1.0, | |
generator: Optional[torch.Generator] = torch.Generator(), | |
seed: int = 2, | |
) -> None: | |
self.generator = generator | |
self.generator.manual_seed(seed) | |
# initialize x_t_latent (it can be any random tensor) | |
if self.denoising_steps_num > 1: | |
self.x_t_latent_buffer = torch.zeros( | |
( | |
(self.denoising_steps_num - 1) * self.frame_bff_size, | |
4, | |
self.latent_height, | |
self.latent_width, | |
), | |
dtype=self.dtype, | |
device=self.device, | |
) | |
else: | |
self.x_t_latent_buffer = None | |
if self.cfg_type == "none": | |
self.guidance_scale = 1.0 | |
else: | |
self.guidance_scale = guidance_scale | |
self.delta = delta | |
do_classifier_free_guidance = False | |
if self.guidance_scale > 1.0: | |
do_classifier_free_guidance = True | |
encoder_output = self.pipe.encode_prompt( | |
prompt=prompt, | |
device=self.device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
) | |
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1) | |
if self.use_denoising_batch and self.cfg_type == "full": | |
uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1) | |
elif self.cfg_type == "initialize": | |
uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1) | |
if self.guidance_scale > 1.0 and ( | |
self.cfg_type == "initialize" or self.cfg_type == "full" | |
): | |
self.prompt_embeds = torch.cat( | |
[uncond_prompt_embeds, self.prompt_embeds], dim=0 | |
) | |
self.scheduler.set_timesteps(num_inference_steps, self.device) | |
self.timesteps = self.scheduler.timesteps.to(self.device) | |
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list | |
self.sub_timesteps = [] | |
for t in self.t_list: | |
self.sub_timesteps.append(self.timesteps[t]) | |
sub_timesteps_tensor = torch.tensor( | |
self.sub_timesteps, dtype=torch.long, device=self.device | |
) | |
self.sub_timesteps_tensor = torch.repeat_interleave( | |
sub_timesteps_tensor, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
self.init_noise = torch.randn( | |
(self.batch_size, 4, self.latent_height, self.latent_width), | |
generator=generator, | |
).to(device=self.device, dtype=self.dtype) | |
self.stock_noise = torch.zeros_like(self.init_noise) | |
c_skip_list = [] | |
c_out_list = [] | |
for timestep in self.sub_timesteps: | |
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete( | |
timestep | |
) | |
c_skip_list.append(c_skip) | |
c_out_list.append(c_out) | |
self.c_skip = ( | |
torch.stack(c_skip_list) | |
.view(len(self.t_list), 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
self.c_out = ( | |
torch.stack(c_out_list) | |
.view(len(self.t_list), 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
alpha_prod_t_sqrt_list = [] | |
beta_prod_t_sqrt_list = [] | |
for timestep in self.sub_timesteps: | |
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt() | |
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt() | |
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt) | |
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt) | |
alpha_prod_t_sqrt = ( | |
torch.stack(alpha_prod_t_sqrt_list) | |
.view(len(self.t_list), 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
beta_prod_t_sqrt = ( | |
torch.stack(beta_prod_t_sqrt_list) | |
.view(len(self.t_list), 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
self.alpha_prod_t_sqrt = torch.repeat_interleave( | |
alpha_prod_t_sqrt, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
self.beta_prod_t_sqrt = torch.repeat_interleave( | |
beta_prod_t_sqrt, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
def update_prompt(self, prompt: str) -> None: | |
encoder_output = self.pipe.encode_prompt( | |
prompt=prompt, | |
device=self.device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=False, | |
) | |
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1) | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
t_index: int, | |
) -> torch.Tensor: | |
noisy_samples = ( | |
self.alpha_prod_t_sqrt[t_index] * original_samples | |
+ self.beta_prod_t_sqrt[t_index] * noise | |
) | |
return noisy_samples | |
def scheduler_step_batch( | |
self, | |
model_pred_batch: torch.Tensor, | |
x_t_latent_batch: torch.Tensor, | |
idx: Optional[int] = None, | |
) -> torch.Tensor: | |
# TODO: use t_list to select beta_prod_t_sqrt | |
if idx is None: | |
F_theta = ( | |
x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch | |
) / self.alpha_prod_t_sqrt | |
denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch | |
else: | |
F_theta = ( | |
x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch | |
) / self.alpha_prod_t_sqrt[idx] | |
denoised_batch = ( | |
self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch | |
) | |
return denoised_batch | |
def unet_step( | |
self, | |
x_t_latent: torch.Tensor, | |
t_list: Union[torch.Tensor, list[int]], | |
idx: Optional[int] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"): | |
x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0) | |
t_list = torch.concat([t_list[0:1], t_list], dim=0) | |
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"): | |
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0) | |
t_list = torch.concat([t_list, t_list], dim=0) | |
else: | |
x_t_latent_plus_uc = x_t_latent | |
model_pred = self.unet( | |
x_t_latent_plus_uc, | |
t_list, | |
encoder_hidden_states=self.prompt_embeds, | |
return_dict=False, | |
)[0] | |
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"): | |
noise_pred_text = model_pred[1:] | |
self.stock_noise = torch.concat( | |
[model_pred[0:1], self.stock_noise[1:]], dim=0 | |
) # ここコメントアウトでself out cfg | |
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"): | |
noise_pred_uncond, noise_pred_text = model_pred.chunk(2) | |
else: | |
noise_pred_text = model_pred | |
if self.guidance_scale > 1.0 and ( | |
self.cfg_type == "self" or self.cfg_type == "initialize" | |
): | |
noise_pred_uncond = self.stock_noise * self.delta | |
if self.guidance_scale > 1.0 and self.cfg_type != "none": | |
model_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
else: | |
model_pred = noise_pred_text | |
# compute the previous noisy sample x_t -> x_t-1 | |
if self.use_denoising_batch: | |
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx) | |
if self.cfg_type == "self" or self.cfg_type == "initialize": | |
scaled_noise = self.beta_prod_t_sqrt * self.stock_noise | |
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx) | |
alpha_next = torch.concat( | |
[ | |
self.alpha_prod_t_sqrt[1:], | |
torch.ones_like(self.alpha_prod_t_sqrt[0:1]), | |
], | |
dim=0, | |
) | |
delta_x = alpha_next * delta_x | |
beta_next = torch.concat( | |
[ | |
self.beta_prod_t_sqrt[1:], | |
torch.ones_like(self.beta_prod_t_sqrt[0:1]), | |
], | |
dim=0, | |
) | |
delta_x = delta_x / beta_next | |
init_noise = torch.concat( | |
[self.init_noise[1:], self.init_noise[0:1]], dim=0 | |
) | |
self.stock_noise = init_noise + delta_x | |
else: | |
# denoised_batch = self.scheduler.step(model_pred, t_list[0], x_t_latent).denoised | |
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx) | |
return denoised_batch, model_pred | |
def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor: | |
image_tensors = image_tensors.to( | |
device=self.device, | |
dtype=self.vae.dtype, | |
) | |
img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator) | |
img_latent = img_latent * self.vae.config.scaling_factor | |
x_t_latent = self.add_noise(img_latent, self.init_noise[0], 0) | |
return x_t_latent | |
def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor: | |
output_latent = self.vae.decode( | |
x_0_pred_out / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
return output_latent | |
def predict_x0_batch(self, x_t_latent: torch.Tensor) -> torch.Tensor: | |
prev_latent_batch = self.x_t_latent_buffer | |
if self.use_denoising_batch: | |
t_list = self.sub_timesteps_tensor | |
if self.denoising_steps_num > 1: | |
x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0) | |
self.stock_noise = torch.cat( | |
(self.init_noise[0:1], self.stock_noise[:-1]), dim=0 | |
) | |
x_0_pred_batch, model_pred = self.unet_step(x_t_latent, t_list) | |
if self.denoising_steps_num > 1: | |
x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0) | |
if self.do_add_noise: | |
self.x_t_latent_buffer = ( | |
self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] | |
+ self.beta_prod_t_sqrt[1:] * self.init_noise[1:] | |
) | |
else: | |
self.x_t_latent_buffer = ( | |
self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] | |
) | |
else: | |
x_0_pred_out = x_0_pred_batch | |
self.x_t_latent_buffer = None | |
else: | |
self.init_noise = x_t_latent | |
for idx, t in enumerate(self.sub_timesteps_tensor): | |
t = t.view( | |
1, | |
).repeat( | |
self.frame_bff_size, | |
) | |
x_0_pred, model_pred = self.unet_step(x_t_latent, t, idx) | |
if idx < len(self.sub_timesteps_tensor) - 1: | |
if self.do_add_noise: | |
x_t_latent = self.alpha_prod_t_sqrt[ | |
idx + 1 | |
] * x_0_pred + self.beta_prod_t_sqrt[ | |
idx + 1 | |
] * torch.randn_like( | |
x_0_pred, device=self.device, dtype=self.dtype | |
) | |
else: | |
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred | |
x_0_pred_out = x_0_pred | |
return x_0_pred_out | |
def __call__( | |
self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray] = None | |
) -> torch.Tensor: | |
# start = torch.cuda.Event(enable_timing=True) | |
# end = torch.cuda.Event(enable_timing=True) | |
# start.record() | |
if x is not None: | |
x = self.image_processor.preprocess(x, self.height, self.width).to( | |
device=self.device, dtype=self.dtype | |
) | |
if self.similar_image_filter: | |
x = self.similar_filter(x) | |
if x is None: | |
time.sleep(self.inference_time_ema) | |
return self.prev_image_result | |
x_t_latent = self.encode_image(x) | |
else: | |
# TODO: check the dimension of x_t_latent | |
x_t_latent = torch.randn((1, 4, self.latent_height, self.latent_width)).to( | |
device=self.device, dtype=self.dtype | |
) | |
x_0_pred_out = self.predict_x0_batch(x_t_latent) | |
x_output = self.decode_image(x_0_pred_out).detach().clone() | |
self.prev_image_result = x_output | |
# end.record() | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
# inference_time = start.elapsed_time(end) / 1000 | |
# self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time | |
return x_output | |
def txt2img(self, batch_size: int = 1) -> torch.Tensor: | |
x_0_pred_out = self.predict_x0_batch( | |
torch.randn((batch_size, 4, self.latent_height, self.latent_width)).to( | |
device=self.device, dtype=self.dtype | |
) | |
) | |
x_output = self.decode_image(x_0_pred_out).detach().clone() | |
return x_output | |
def txt2img_sd_turbo(self, batch_size: int = 1) -> torch.Tensor: | |
x_t_latent = torch.randn( | |
(batch_size, 4, self.latent_height, self.latent_width), | |
device=self.device, | |
dtype=self.dtype, | |
) | |
model_pred = self.unet( | |
x_t_latent, | |
self.sub_timesteps_tensor, | |
encoder_hidden_states=self.prompt_embeds, | |
return_dict=False, | |
)[0] | |
x_0_pred_out = ( | |
x_t_latent - self.beta_prod_t_sqrt * model_pred | |
) / self.alpha_prod_t_sqrt | |
return self.decode_image(x_0_pred_out) | |