ECON / lib /common /imutils.py
Yuliang's picture
init
da48dbe
raw
history blame
18.5 kB
import cv2
import mediapipe as mp
import torch
import numpy as np
import torch.nn.functional as F
from rembg import remove
from rembg.session_factory import new_session
from PIL import Image
from torchvision.models import detection
from lib.pymafx.core import constants
from lib.common.cloth_extraction import load_segmentation
from torchvision import transforms
def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
all_ops = []
if res is not None:
all_ops.append(transforms.Resize(size=res))
if not is_tensor:
all_ops.append(transforms.ToTensor())
if mean is not None and std is not None:
all_ops.append(transforms.Normalize(mean=mean, std=std))
return transforms.Compose(all_ops)
def aug_matrix(w1, h1, w2, h2):
dx = (w2 - w1) / 2.0
dy = (h2 - h1) / 2.0
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]])
scale = np.min([float(w2) / w1, float(h2) / h1])
M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale)
M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3)
M = M.dot(matrix_trans)
return M
def get_affine_matrix(center, translate, scale):
cx, cy = center
tx, ty = translate
M = [1, 0, 0, 0, 1, 0]
M = [x * scale for x in M]
# Apply translation and of center translation: RSS * C^-1
M[2] += M[0] * (-cx) + M[1] * (-cy)
M[5] += M[3] * (-cx) + M[4] * (-cy)
# Apply center translation: T * C * RSS * C^-1
M[2] += cx + tx
M[5] += cy + ty
return M
def load_img(img_file):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return img
def get_keypoints(image):
def collect_xyv(x, body=True):
lmk = x.landmark
all_lmks = []
for i in range(len(lmk)):
visibility = lmk[i].visibility if body else 1.0
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility]))
return torch.stack(all_lmks).view(-1, 4)
mp_holistic = mp.solutions.holistic
with mp_holistic.Holistic(
static_image_mode=True,
model_complexity=2,
) as holistic:
results = holistic.process(image)
fake_kps = torch.zeros(33, 4)
result = {}
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps
result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps
result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps
result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps
return result
def get_pymafx(image, landmarks):
# image [3,512,512]
item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]}
for part in ['lhand', 'rhand', 'face']:
kp2d = landmarks[part]
kp2d_valid = kp2d[kp2d[:, 3] > 0.]
if len(kp2d_valid) > 0:
bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])]
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.]
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
# handle invalid part keypoints
if len(kp2d_valid) < 1 or scale_part < 0.01:
center_part = [0, 0]
scale_part = 0.5
kp2d[:, 3] = 0
center_part = torch.tensor(center_part).float()
theta_part = torch.zeros(1, 2, 3)
theta_part[:, 0, 0] = scale_part
theta_part[:, 1, 1] = scale_part
theta_part[:, :, -1] = center_part
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False)
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float()
item[f'img_{part}'] = img_part
theta_i_inv = torch.zeros_like(theta_part)
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0]
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1]
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1)
item[f'{part}_theta_inv'] = theta_i_inv[0]
return item
def expand_bbox(bbox, width, height, ratio=0.1):
bbox = np.around(bbox).astype(np.int16)
bbox_width = bbox[2] - bbox[0]
bbox_height = bbox[3] - bbox[1]
bbox[1] = max(bbox[1] - bbox_height * ratio, 0)
bbox[3] = min(bbox[3] + bbox_height * ratio, height)
bbox[0] = max(bbox[0] - bbox_width * ratio, 0)
bbox[2] = min(bbox[2] + bbox_width * ratio, width)
return bbox
def remove_floats(mask):
# 1. find all the contours
# 2. fillPoly "True" for the largest one
# 3. fillPoly "False" for its childrens
new_mask = np.zeros(mask.shape)
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True)
body_cnt = cnts[cnt_index[0]]
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0]
childs_cnt = [cnts[idx] for idx in childs_cnt_idx]
cv2.fillPoly(new_mask, [body_cnt], 1)
cv2.fillPoly(new_mask, childs_cnt, 0)
return new_mask
def process_image(img_file, hps_type, single, input_res=512):
img_raw = load_img(img_file)
in_height, in_width = img_raw.shape[:2]
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2)
# from rectangle to square by padding (input_res*2, input_res*2)
img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC)
# detection for bbox
detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights)
detector.eval()
predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0]
if single:
top_score = predictions["scores"][predictions["labels"] == 1].max()
human_ids = torch.where(predictions["scores"] == top_score)[0]
else:
human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1)
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy()
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy()
width = boxes[:, 2] - boxes[:, 0] #(N,)
height = boxes[:, 3] - boxes[:, 1] #(N,)
center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2)
scale = np.array([width, height]).max(axis=0) / 90.
img_icon_lst = []
img_crop_lst = []
img_hps_lst = []
img_mask_lst = []
uncrop_param_lst = []
landmark_lst = []
hands_visibility_lst = []
img_pymafx_lst = []
uncrop_param = {
"center": center,
"scale": scale,
"ori_shape": [in_height, in_width],
"box_shape": [input_res, input_res],
"crop_shape": [input_res * 2, input_res * 2, 3],
"M": M,
}
for idx in range(len(boxes)):
# mask out the pixels of others
if len(masks) > 1:
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0)
else:
mask_detection = masks[0] * 0.
img_crop, _ = crop(
np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res])
# get accurate segmentation mask of focus person
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net"))
img_mask = remove_floats(img_rembg[:, :, [3]])
# required image tensors / arrays
# img_icon (tensor): (-1, 1), [3,512,512]
# img_hps (tensor): (-2.11, 2.44), [3,224,224]
# img_np (array): (0, 255), [512,512,3]
# img_rembg (array): (0, 255), [512,512,4]
# img_mask (array): (0, 1), [512,512,1]
# img_crop (array): (0, 255), [512,512,4]
mean_icon = std_icon = (0.5, 0.5, 0.5)
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8)
img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute(
2, 0, 1)
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np))
landmarks = get_keypoints(img_np)
if hps_type == 'pymafx':
img_pymafx_lst.append(
get_pymafx(
transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)),
landmarks))
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0)
img_icon_lst.append(img_icon)
img_hps_lst.append(img_hps)
img_mask_lst.append(torch.tensor(img_mask[..., 0]))
uncrop_param_lst.append(uncrop_param)
landmark_lst.append(landmarks['body'])
hands_visibility = [True, True]
if landmarks['lhand'][:, -1].mean() == 0.:
hands_visibility[0] = False
if landmarks['rhand'][:, -1].mean() == 0.:
hands_visibility[1] = False
hands_visibility_lst.append(hands_visibility)
return_dict = {
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res]
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res]
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res]
"img_raw": img_raw, #[H, W, 3]
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res]
"uncrop_param": uncrop_param,
"landmark": torch.stack(landmark_lst), #[N, 33, 4]
"hands_visibility": hands_visibility_lst,
}
img_pymafx = {}
if len(img_pymafx_lst) > 0:
for idx in range(len(img_pymafx_lst)):
for key in img_pymafx_lst[idx].keys():
if key not in img_pymafx.keys():
img_pymafx[key] = [img_pymafx_lst[idx][key]]
else:
img_pymafx[key] += [img_pymafx_lst[idx][key]]
for key in img_pymafx.keys():
img_pymafx[key] = torch.stack(img_pymafx[key]).float()
return_dict.update({"img_pymafx": img_pymafx})
return return_dict
def get_transform(center, scale, res):
"""Generate transformation matrix."""
h = 100 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + 0.5)
t[1, 2] = res[0] * (-float(center[1]) / h + 0.5)
t[2, 2] = 1
return t
def transform(pt, center, scale, res, invert=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T
new_pt = np.dot(t, new_pt)
return np.around(new_pt[:2]).astype(np.int16)
def crop(img, center, scale, res):
"""Crop image according to the supplied bounding box."""
img_height, img_width = img.shape[:2]
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0]
new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(img_width, br[0])
old_y = max(0, ul[1]), min(img_height, br[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
new_img = F.interpolate(
torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3,
1)[0].numpy().astype(np.uint8)
return new_img, (old_x, new_x, old_y, new_y, new_shape)
def crop_segmentation(org_coord, res, cropping_parameters):
old_x, new_x, old_y, new_y, new_shape = cropping_parameters
new_coord = np.zeros((org_coord.shape))
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0])
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0])
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1])
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0])
return new_coord
def corner_align(ul, br):
if ul[1] - ul[0] != br[1] - br[0]:
ul[1] = ul[0] + br[1] - br[0]
return ul, br
def uncrop(img, center, scale, orig_shape):
"""'Undo' the image cropping/resizing.
This function is used when evaluating mask/part segmentation.
"""
res = img.shape[:2]
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
# quick fix
ul, br = corner_align(ul, br)
# size of cropped image
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
new_img = np.zeros(orig_shape, dtype=np.uint8)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
return new_img
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array([
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1],
])
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
aa = (resrot.T)[0]
return aa
def flip_img(img):
"""Flip rgb images or masks.
channels come last, e.g. (256,256,3).
"""
img = np.fliplr(img)
return img
def flip_kp(kp, is_smpl=False):
"""Flip keypoints."""
if len(kp) == 24:
if is_smpl:
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
else:
flipped_parts = constants.J24_FLIP_PERM
elif len(kp) == 49:
if is_smpl:
flipped_parts = constants.SMPL_J49_FLIP_PERM
else:
flipped_parts = constants.J49_FLIP_PERM
kp = kp[flipped_parts]
kp[:, 0] = -kp[:, 0]
return kp
def flip_pose(pose):
"""Flip pose.
The flipping is based on SMPL parameters.
"""
flipped_parts = constants.SMPL_POSE_FLIP_PERM
pose = pose[flipped_parts]
# we also negate the second and the third dimension of the axis-angle
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
return pose
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
# Normalize keypoints between -1, 1
if not inv:
ratio = 1.0 / crop_size
kp_2d = 2.0 * kp_2d * ratio - 1.0
else:
ratio = 1.0 / crop_size
kp_2d = (kp_2d + 1.0) / (2 * ratio)
return kp_2d
def visualize_landmarks(image, joints, color):
img_w, img_h = image.shape[:2]
for joint in joints:
image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color)
return image
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
"""
param joints: [num_joints, 3]
param joints_vis: [num_joints, 3]
return: target, target_weight(1: visible, 0: invisible)
"""
num_joints = joints.shape[0]
device = joints.device
cur_device = torch.device(device.type, device.index)
if not hasattr(heatmap_size, "__len__"):
# width height
heatmap_size = [heatmap_size, heatmap_size]
assert len(heatmap_size) == 2
target_weight = np.ones((num_joints, 1), dtype=np.float32)
if joints_vis is not None:
target_weight[:, 0] = joints_vis[:, 0]
target = torch.zeros(
(num_joints, heatmap_size[1], heatmap_size[0]),
dtype=torch.float32,
device=cur_device,
)
tmp_size = sigma * 3
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0):
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
# x = np.arange(0, size, 1, np.float32)
# y = x[:, np.newaxis]
# x0 = y0 = size // 2
# # The gaussian is not normalized, we want the center value to equal 1
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# g = torch.from_numpy(g.astype(np.float32))
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
y = x.unsqueeze(-1)
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return target, target_weight