Spaces:
Runtime error
Runtime error
import cv2 | |
import mediapipe as mp | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from rembg import remove | |
from rembg.session_factory import new_session | |
from PIL import Image | |
from torchvision.models import detection | |
from lib.pymafx.core import constants | |
from lib.common.cloth_extraction import load_segmentation | |
from torchvision import transforms | |
def transform_to_tensor(res, mean=None, std=None, is_tensor=False): | |
all_ops = [] | |
if res is not None: | |
all_ops.append(transforms.Resize(size=res)) | |
if not is_tensor: | |
all_ops.append(transforms.ToTensor()) | |
if mean is not None and std is not None: | |
all_ops.append(transforms.Normalize(mean=mean, std=std)) | |
return transforms.Compose(all_ops) | |
def aug_matrix(w1, h1, w2, h2): | |
dx = (w2 - w1) / 2.0 | |
dy = (h2 - h1) / 2.0 | |
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]]) | |
scale = np.min([float(w2) / w1, float(h2) / h1]) | |
M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale) | |
M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3) | |
M = M.dot(matrix_trans) | |
return M | |
def get_affine_matrix(center, translate, scale): | |
cx, cy = center | |
tx, ty = translate | |
M = [1, 0, 0, 0, 1, 0] | |
M = [x * scale for x in M] | |
# Apply translation and of center translation: RSS * C^-1 | |
M[2] += M[0] * (-cx) + M[1] * (-cy) | |
M[5] += M[3] * (-cx) + M[4] * (-cy) | |
# Apply center translation: T * C * RSS * C^-1 | |
M[2] += cx + tx | |
M[5] += cy + ty | |
return M | |
def load_img(img_file): | |
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 2: | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
if not img_file.endswith("png"): | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
else: | |
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) | |
return img | |
def get_keypoints(image): | |
def collect_xyv(x, body=True): | |
lmk = x.landmark | |
all_lmks = [] | |
for i in range(len(lmk)): | |
visibility = lmk[i].visibility if body else 1.0 | |
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) | |
return torch.stack(all_lmks).view(-1, 4) | |
mp_holistic = mp.solutions.holistic | |
with mp_holistic.Holistic( | |
static_image_mode=True, | |
model_complexity=2, | |
) as holistic: | |
results = holistic.process(image) | |
fake_kps = torch.zeros(33, 4) | |
result = {} | |
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps | |
result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps | |
result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps | |
result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps | |
return result | |
def get_pymafx(image, landmarks): | |
# image [3,512,512] | |
item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]} | |
for part in ['lhand', 'rhand', 'face']: | |
kp2d = landmarks[part] | |
kp2d_valid = kp2d[kp2d[:, 3] > 0.] | |
if len(kp2d_valid) > 0: | |
bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])] | |
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] | |
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 | |
# handle invalid part keypoints | |
if len(kp2d_valid) < 1 or scale_part < 0.01: | |
center_part = [0, 0] | |
scale_part = 0.5 | |
kp2d[:, 3] = 0 | |
center_part = torch.tensor(center_part).float() | |
theta_part = torch.zeros(1, 2, 3) | |
theta_part[:, 0, 0] = scale_part | |
theta_part[:, 1, 1] = scale_part | |
theta_part[:, :, -1] = center_part | |
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) | |
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() | |
item[f'img_{part}'] = img_part | |
theta_i_inv = torch.zeros_like(theta_part) | |
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] | |
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] | |
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) | |
item[f'{part}_theta_inv'] = theta_i_inv[0] | |
return item | |
def expand_bbox(bbox, width, height, ratio=0.1): | |
bbox = np.around(bbox).astype(np.int16) | |
bbox_width = bbox[2] - bbox[0] | |
bbox_height = bbox[3] - bbox[1] | |
bbox[1] = max(bbox[1] - bbox_height * ratio, 0) | |
bbox[3] = min(bbox[3] + bbox_height * ratio, height) | |
bbox[0] = max(bbox[0] - bbox_width * ratio, 0) | |
bbox[2] = min(bbox[2] + bbox_width * ratio, width) | |
return bbox | |
def remove_floats(mask): | |
# 1. find all the contours | |
# 2. fillPoly "True" for the largest one | |
# 3. fillPoly "False" for its childrens | |
new_mask = np.zeros(mask.shape) | |
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) | |
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) | |
body_cnt = cnts[cnt_index[0]] | |
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] | |
childs_cnt = [cnts[idx] for idx in childs_cnt_idx] | |
cv2.fillPoly(new_mask, [body_cnt], 1) | |
cv2.fillPoly(new_mask, childs_cnt, 0) | |
return new_mask | |
def process_image(img_file, hps_type, single, input_res=512): | |
img_raw = load_img(img_file) | |
in_height, in_width = img_raw.shape[:2] | |
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2) | |
# from rectangle to square by padding (input_res*2, input_res*2) | |
img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC) | |
# detection for bbox | |
detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights) | |
detector.eval() | |
predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0] | |
if single: | |
top_score = predictions["scores"][predictions["labels"] == 1].max() | |
human_ids = torch.where(predictions["scores"] == top_score)[0] | |
else: | |
human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1) | |
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() | |
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() | |
width = boxes[:, 2] - boxes[:, 0] #(N,) | |
height = boxes[:, 3] - boxes[:, 1] #(N,) | |
center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2) | |
scale = np.array([width, height]).max(axis=0) / 90. | |
img_icon_lst = [] | |
img_crop_lst = [] | |
img_hps_lst = [] | |
img_mask_lst = [] | |
uncrop_param_lst = [] | |
landmark_lst = [] | |
hands_visibility_lst = [] | |
img_pymafx_lst = [] | |
uncrop_param = { | |
"center": center, | |
"scale": scale, | |
"ori_shape": [in_height, in_width], | |
"box_shape": [input_res, input_res], | |
"crop_shape": [input_res * 2, input_res * 2, 3], | |
"M": M, | |
} | |
for idx in range(len(boxes)): | |
# mask out the pixels of others | |
if len(masks) > 1: | |
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) | |
else: | |
mask_detection = masks[0] * 0. | |
img_crop, _ = crop( | |
np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res]) | |
# get accurate segmentation mask of focus person | |
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) | |
img_mask = remove_floats(img_rembg[:, :, [3]]) | |
# required image tensors / arrays | |
# img_icon (tensor): (-1, 1), [3,512,512] | |
# img_hps (tensor): (-2.11, 2.44), [3,224,224] | |
# img_np (array): (0, 255), [512,512,3] | |
# img_rembg (array): (0, 255), [512,512,4] | |
# img_mask (array): (0, 1), [512,512,1] | |
# img_crop (array): (0, 255), [512,512,4] | |
mean_icon = std_icon = (0.5, 0.5, 0.5) | |
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) | |
img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute( | |
2, 0, 1) | |
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)) | |
landmarks = get_keypoints(img_np) | |
if hps_type == 'pymafx': | |
img_pymafx_lst.append( | |
get_pymafx( | |
transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)), | |
landmarks)) | |
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) | |
img_icon_lst.append(img_icon) | |
img_hps_lst.append(img_hps) | |
img_mask_lst.append(torch.tensor(img_mask[..., 0])) | |
uncrop_param_lst.append(uncrop_param) | |
landmark_lst.append(landmarks['body']) | |
hands_visibility = [True, True] | |
if landmarks['lhand'][:, -1].mean() == 0.: | |
hands_visibility[0] = False | |
if landmarks['rhand'][:, -1].mean() == 0.: | |
hands_visibility[1] = False | |
hands_visibility_lst.append(hands_visibility) | |
return_dict = { | |
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res] | |
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res] | |
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res] | |
"img_raw": img_raw, #[H, W, 3] | |
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res] | |
"uncrop_param": uncrop_param, | |
"landmark": torch.stack(landmark_lst), #[N, 33, 4] | |
"hands_visibility": hands_visibility_lst, | |
} | |
img_pymafx = {} | |
if len(img_pymafx_lst) > 0: | |
for idx in range(len(img_pymafx_lst)): | |
for key in img_pymafx_lst[idx].keys(): | |
if key not in img_pymafx.keys(): | |
img_pymafx[key] = [img_pymafx_lst[idx][key]] | |
else: | |
img_pymafx[key] += [img_pymafx_lst[idx][key]] | |
for key in img_pymafx.keys(): | |
img_pymafx[key] = torch.stack(img_pymafx[key]).float() | |
return_dict.update({"img_pymafx": img_pymafx}) | |
return return_dict | |
def get_transform(center, scale, res): | |
"""Generate transformation matrix.""" | |
h = 100 * scale | |
t = np.zeros((3, 3)) | |
t[0, 0] = float(res[1]) / h | |
t[1, 1] = float(res[0]) / h | |
t[0, 2] = res[1] * (-float(center[0]) / h + 0.5) | |
t[1, 2] = res[0] * (-float(center[1]) / h + 0.5) | |
t[2, 2] = 1 | |
return t | |
def transform(pt, center, scale, res, invert=0): | |
"""Transform pixel location to different reference.""" | |
t = get_transform(center, scale, res) | |
if invert: | |
t = np.linalg.inv(t) | |
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T | |
new_pt = np.dot(t, new_pt) | |
return np.around(new_pt[:2]).astype(np.int16) | |
def crop(img, center, scale, res): | |
"""Crop image according to the supplied bounding box.""" | |
img_height, img_width = img.shape[:2] | |
# Upper left point | |
ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
# Bottom right point | |
br = np.array(transform(res, center, scale, res, invert=1)) | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(new_shape) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(img_width, br[0]) | |
old_y = max(0, ul[1]), min(img_height, br[1]) | |
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] | |
new_img = F.interpolate( | |
torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3, | |
1)[0].numpy().astype(np.uint8) | |
return new_img, (old_x, new_x, old_y, new_y, new_shape) | |
def crop_segmentation(org_coord, res, cropping_parameters): | |
old_x, new_x, old_y, new_y, new_shape = cropping_parameters | |
new_coord = np.zeros((org_coord.shape)) | |
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0]) | |
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0]) | |
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1]) | |
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0]) | |
return new_coord | |
def corner_align(ul, br): | |
if ul[1] - ul[0] != br[1] - br[0]: | |
ul[1] = ul[0] + br[1] - br[0] | |
return ul, br | |
def uncrop(img, center, scale, orig_shape): | |
"""'Undo' the image cropping/resizing. | |
This function is used when evaluating mask/part segmentation. | |
""" | |
res = img.shape[:2] | |
# Upper left point | |
ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
# Bottom right point | |
br = np.array(transform(res, center, scale, res, invert=1)) | |
# quick fix | |
ul, br = corner_align(ul, br) | |
# size of cropped image | |
crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
new_img = np.zeros(orig_shape, dtype=np.uint8) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) | |
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] | |
return new_img | |
def rot_aa(aa, rot): | |
"""Rotate axis angle parameters.""" | |
# pose parameters | |
R = np.array([ | |
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1], | |
]) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
aa = (resrot.T)[0] | |
return aa | |
def flip_img(img): | |
"""Flip rgb images or masks. | |
channels come last, e.g. (256,256,3). | |
""" | |
img = np.fliplr(img) | |
return img | |
def flip_kp(kp, is_smpl=False): | |
"""Flip keypoints.""" | |
if len(kp) == 24: | |
if is_smpl: | |
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM | |
else: | |
flipped_parts = constants.J24_FLIP_PERM | |
elif len(kp) == 49: | |
if is_smpl: | |
flipped_parts = constants.SMPL_J49_FLIP_PERM | |
else: | |
flipped_parts = constants.J49_FLIP_PERM | |
kp = kp[flipped_parts] | |
kp[:, 0] = -kp[:, 0] | |
return kp | |
def flip_pose(pose): | |
"""Flip pose. | |
The flipping is based on SMPL parameters. | |
""" | |
flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
pose = pose[flipped_parts] | |
# we also negate the second and the third dimension of the axis-angle | |
pose[1::3] = -pose[1::3] | |
pose[2::3] = -pose[2::3] | |
return pose | |
def normalize_2d_kp(kp_2d, crop_size=224, inv=False): | |
# Normalize keypoints between -1, 1 | |
if not inv: | |
ratio = 1.0 / crop_size | |
kp_2d = 2.0 * kp_2d * ratio - 1.0 | |
else: | |
ratio = 1.0 / crop_size | |
kp_2d = (kp_2d + 1.0) / (2 * ratio) | |
return kp_2d | |
def visualize_landmarks(image, joints, color): | |
img_w, img_h = image.shape[:2] | |
for joint in joints: | |
image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color) | |
return image | |
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): | |
""" | |
param joints: [num_joints, 3] | |
param joints_vis: [num_joints, 3] | |
return: target, target_weight(1: visible, 0: invisible) | |
""" | |
num_joints = joints.shape[0] | |
device = joints.device | |
cur_device = torch.device(device.type, device.index) | |
if not hasattr(heatmap_size, "__len__"): | |
# width height | |
heatmap_size = [heatmap_size, heatmap_size] | |
assert len(heatmap_size) == 2 | |
target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
if joints_vis is not None: | |
target_weight[:, 0] = joints_vis[:, 0] | |
target = torch.zeros( | |
(num_joints, heatmap_size[1], heatmap_size[0]), | |
dtype=torch.float32, | |
device=cur_device, | |
) | |
tmp_size = sigma * 3 | |
for joint_id in range(num_joints): | |
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) | |
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0): | |
# If not, just return the image as is | |
target_weight[joint_id] = 0 | |
continue | |
# # Generate gaussian | |
size = 2 * tmp_size + 1 | |
# x = np.arange(0, size, 1, np.float32) | |
# y = x[:, np.newaxis] | |
# x0 = y0 = size // 2 | |
# # The gaussian is not normalized, we want the center value to equal 1 | |
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
# g = torch.from_numpy(g.astype(np.float32)) | |
x = torch.arange(0, size, dtype=torch.float32, device=cur_device) | |
y = x.unsqueeze(-1) | |
x0 = y0 = size // 2 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) | |
img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) | |
v = target_weight[joint_id] | |
if v > 0.5: | |
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return target, target_weight | |