Spaces:
Runtime error
Runtime error
File size: 10,332 Bytes
f34e8aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import gradio as gr
from einops import rearrange, repeat
import torchvision.transforms.functional as ttf
from timm.models.convmixer import ConvMixer
import functorch
def img_to_patches(im, patch_h, patch_w):
"B, C, H, W -> B, C, D, h_patch, w_patch"
bs, c, h, w = im.shape
im = im.unfold(-1, patch_h, patch_w).unfold(2, patch_h, patch_w)
im = im.permute(0, 1, 2, 3, 5, 4)
im = im.contiguous().view(bs, c, -1, patch_h, patch_w)
return im
def patches_to_img(patches, num_patch_h, num_patch_w):
"B, C, D, h_patch, w_patch -> B, C, H, W"
bs, c, d, h, w = patches.shape
patches = patches.view(bs, c, num_patch_h, num_patch_w, h, w)
# fold patches
patches = torch.cat([patches[..., k, :, :] for k in range(num_patch_w)], dim=-1)
x = torch.cat([patches[..., k, :, :] for k in range(num_patch_h)], dim=-2)
return x
def vmapped_rotate(x, angle, in_dims=1):
"B, C, D, H, W -> B, C, D, H, W"
rotate_ = functorch.vmap(ttf.rotate, in_dims=in_dims, out_dims=in_dims)
return rotate_(x, angle=angle)
class CollageOperator2d(nn.Module):
def __init__(self, res, rh, rw, dh=None, dw=None, use_augmentations=False):
"""Collage Operator for two-dimensional data. Given a fractal code, it outputs the corresponding fixed-point.
Args:
res (int): Spatial resolutions of input (and output) data.
rh (int): Height of range (target) square patches.
rw (int): Width of range (target) square patches.
dh (int, optional): Height of range domain (source) patches. Defaults to `res`.
dw (int, optional): Width of range domain (source) patches. Defaults to `res`.
use_augmentations (bool, optional): Use augmentations of domain square patches at each decoding iteration. Defaults to `False`.
"""
super().__init__()
self.dh, self.dw = dh, dw
if self.dh is None: self.dh = res
if self.dw is None: self.dw = res
# 5 refers to the 5 copies of domain patches generated with the current choice of augmentations:
# 3 rotations (90, 180, 270), horizontal flips and vertical flips.
self.n_aug_transforms = 9 if use_augmentations else 0
# precompute useful quantities related to the partitioning scheme into patches, given
# the desired `dh`, `dw`, `rh`, `rw`.
partition_info = self.collage_partition_info(res, self.dh, self.dw, rh, rw)
self.n_dh, self.n_dw, self.n_rh, self.n_rw, self.h_factors, self.w_factors, self.n_domains, self.n_ranges = partition_info
# At each step of the collage, all (source) domain patches are pooled down to the size of range (target) patches.
# Notices how the pooling factors do not change if one decodes at higher resolutions, since both domain and range
# patch sizes are multiplied by the same integer.
self.pool = nn.AvgPool3d(kernel_size=(1, self.h_factors, self.w_factors), stride=(1, self.h_factors, self.w_factors))
def collage_operator(self, z, collage_weight, collage_bias):
"""Collage Operator (decoding). Performs the steps described in Def. 3.1, Figure 2."""
# Given the current iterate `z`, we split it into domain patches according to the partitioning scheme.
domains = img_to_patches(z)
# Pool domains (pre augmentation) to range patch sizes.
pooled_domains = self.pool(domains)
# If needed, produce additional candidate domain patches as augmentations of existing domains.
# Auxiliary learned feature maps / patches are also introduced here.
if self.n_aug_transforms > 1:
pooled_domains = self.generate_candidates(pooled_domains)
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.num_ranges)
# Apply the affine maps to domain patches
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, collage_weight)
range_domains = range_domains + collage_bias[..., None, None]
# Reconstruct data by "composing" the output patches back together (collage!).
z = patches_to_img(range_domains)
return z
def decode_step(self, z, weight, bias, superres_factor, return_patches=False):
"""Single Collage Operator step. Performs the steps described in:
https://arxiv.org/pdf/2204.07673.pdf (Def. 3.1, Figure 2).
"""
# Given the current iterate `z`, we split it into `n_domains` domain patches.
domains = img_to_patches(z, patch_h=self.dh * superres_factor, patch_w=self.dw * superres_factor)
# Pool domains (pre augmentation) for compatibility with range patches.
pooled_domains = self.pool(domains)
# If needed, produce additional candidate domain patches as augmentations of existing domains.
if self.n_aug_transforms > 1:
pooled_domains = self.generate_candidates(pooled_domains)
pooled_domains = repeat(pooled_domains, 'b c d h w -> b c d r h w', r=self.n_ranges)
# Apply the affine maps to domain patches
range_domains = torch.einsum('bcdrhw, bcdr -> bcrhw', pooled_domains, weight)
range_domains = range_domains + bias[:, :, :, None, None]
# Reconstruct data by "composing" the output patches back together (collage!).
z = patches_to_img(range_domains, self.n_rh, self.n_rw)
if return_patches: return z, (domains, pooled_domains, range_domains)
return z
def generate_candidates(self, domains):
domains = domains.permute(0,2,1,3,4)
rotations = [vmapped_rotate(domains, angle=angle) for angle in (90, 180, 270)]
hflips = ttf.hflip(domains)
vflips = ttf.vflip(domains)
br_shift = ttf.adjust_brightness(domains, 0.5)
cr_shift = ttf.adjust_contrast(domains, 0.5)
hue_shift = ttf.adjust_hue(domains, 0.5)
sat_shift = ttf.adjust_saturation(domains, 0.5)
domains = torch.cat([domains, *rotations, hflips, vflips, br_shift, cr_shift, hue_shift, sat_shift], dim=1)
return domains.permute(0,2,1,3,4)
def forward(self, x, co_w, co_bias, decode_steps=20, superres_factor=1):
B, C, H, W = x.shape
# It does not matter which initial condition is chosen, so long as the dimensions match.
# The fixed-point of a Collage Operator is uniquely determined* by the fractal code
# *: and auxiliary learned patches, if any.
z = torch.randn(B, C, H * superres_factor, W * superres_factor).to(x.device)
for _ in range(decode_steps):
z = self.decode_step(z, co_w, co_bias, superres_factor)
return z
def collage_partition_info(self, input_res, dh, dw, rh, rw):
"""
Computes auxiliary information for the collage (number of source and target domains, and relative size factors)
"""
height = width = input_res
n_dh, n_dw = height // dh, width // dw
n_domains = n_dh * n_dw
# Adjust number of domain patches to include augmentations
n_domains = n_domains + n_domains * self.n_aug_transforms # (3 rotations, hflip, vlip)
h_factors, w_factors = dh // rh, dw // rw
n_rh, n_rw = input_res // rh, input_res // rw
n_ranges = n_rh * n_rw
return n_dh, n_dw, n_rh, n_rw, h_factors, w_factors, n_domains, n_ranges
class NeuralCollageOperator2d(nn.Module):
def __init__(self, out_res, out_channels, rh, rw, dh=None, dw=None, net=None, use_augmentations=False):
super().__init__()
self.co = CollageOperator2d(out_res, rh, rw, dh, dw, use_augmentations)
# In a Collage Operator, the affine map requires a single scalar weight
# for each pair of domain and range patches, and a single scalar bias for each range.
# `net` learns to output these weights based on the objective.
self.co_w_dim = self.co.n_domains * self.co.n_ranges * out_channels
self.co_bias_dim = self.co.n_ranges * out_channels
tot_out_dim = self.co_w_dim + self.co_bias_dim
# Does not need to be a ConvMixer: for deep generative Neural Collages `net` can be e.g, a VDVAE.
if net is None:
net = ConvMixer(dim=32, depth=8, kernel_size=9, patch_size=7, num_classes=tot_out_dim)
self.net = net
self.softmax = nn.Softmax(dim=-1)
self.tanh = nn.Tanh()
def forward(self, x, decode_steps=10, superres_factor=1, return_co_code=False):
B, C, H, W = x.shape
co_code = self.net(x) # B, C, co_w_dim + co_mix_dim + co_bias_dim
co_w, co_bias = torch.split(co_code, [self.co_w_dim, self.co_bias_dim], dim=-1)
co_w = co_w.view(B, C, self.co.n_domains, self.co.n_ranges)
# No restrictions on co_w, thus no guarantee of contractiveness.
# In the full jax version of Neural Collages we enforce the constraint |co_w| < 1 (elementwise).
co_bias = co_bias.view(B, C, self.co.n_ranges)
co_bias = self.tanh(co_bias)
z = self.co(x, co_w, co_bias, decode_steps=decode_steps, superres_factor=superres_factor)
if return_co_code: return z, co_w, co_bias
else: return z
def fractalize(img, superresolution_factor=1):
superresolution_factor = int(superresolution_factor)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
im = np.asarray(img)
im = torch.from_numpy(im).permute(2,0,1).to(device)
co = NeuralCollageOperator2d(out_res=100, out_channels=3, rh=2, rw=2, dh=100, dw=100).to(device)
opt = torch.optim.Adam(co.parameters(), lr=1e-2)
objective = nn.MSELoss()
norm_im = im.float().unsqueeze(0) / 255
for _ in range(200):
recon = co(norm_im, decode_steps=10, return_co_code=False)
loss = objective(recon, norm_im)
loss.backward()
opt.step()
opt.zero_grad()
fractal_img = co(norm_im, decode_steps=10, superres_factor=superresolution_factor)[0].permute(1,2,0).clamp(-1, 1)
return fractal_img.cpu().detach().numpy()
demo = gr.Interface(
fn=fractalize,
inputs=[gr.Image(shape=(100, 100), image_mode='RGB'), gr.Slider(1, 40, step=1)],
outputs="image"
)
demo.launch()
|