Spaces:
Sleeping
Sleeping
import subprocess | |
import streamlit as st | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import black | |
from pylint import lint | |
from io import StringIO | |
import os | |
import json | |
from streamlit_ace import st_ace | |
from agent import ( | |
AppType, | |
createLlamaPrompt, | |
createSpace, | |
isPythonOrGradioAppPrompt, | |
isReactAppPrompt, | |
isStreamlitAppPrompt, | |
generateFiles, | |
) | |
# Set Hugging Face repository URL and project root path | |
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri" | |
PROJECT_ROOT = "projects" | |
AGENT_DIRECTORY = "agents" | |
# Global state for session management | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
if 'terminal_history' not in st.session_state: | |
st.session_state.terminal_history = [] | |
if 'workspace_projects' not in st.session_state: | |
st.session_state.workspace_projects = {} | |
if 'available_agents' not in st.session_state: | |
st.session_state.available_agents = [] | |
if 'current_state' not in st.session_state: | |
st.session_state.current_state = { | |
'toolbox': {}, | |
'workspace_chat': {} | |
} | |
# Load Hugging Face models for code generation, translation, and conversation | |
try: | |
code_generator = pipeline("text-generation", model="Salesforce/codegen-350M-mono") | |
translator = pipeline("translation_xx_to_yy", model="Helsinki-NLP/opus-mt-en-fr") # Replace with appropriate language pair | |
conversational_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
conversational_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
conversational_generator = pipeline("text-generation", model=conversational_model, tokenizer=conversational_tokenizer) | |
except EnvironmentError as e: | |
st.error(f"Error loading Hugging Face models: {e}") | |
# Define AIAgent class | |
class AIAgent: | |
def __init__(self, name, description, skills): | |
self.name = name | |
self.description = description | |
self.skills = skills | |
def create_agent_prompt(self): | |
skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) | |
agent_prompt = f""" | |
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: | |
{skills_str} | |
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. | |
""" | |
return agent_prompt | |
def autonomous_build(self, chat_history, workspace_projects): | |
""" | |
Autonomous build logic based on chat history and workspace projects. | |
This function analyzes the chat history and workspace projects to determine the next steps in the development process. | |
It uses sentiment analysis to gauge the user's satisfaction and summarization to extract key information. | |
Args: | |
chat_history (list): A list of tuples containing user input and agent responses. | |
workspace_projects (dict): A dictionary of projects and their associated files. | |
Returns: | |
tuple: A tuple containing a summary of the current state and the suggested next step. | |
""" | |
summary = "Chat History:\n" + '\n'.join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) | |
summary += "\n\nWorkspace Projects:\n" + '\n'.join([f"{p}: {', '.join(ws_projects.keys())}" for p, ws_projects in workspace_projects.items()]) | |
sentiment_analyzer = pipeline("sentiment-analysis") | |
sentiment_output = sentiment_analyzer(summary)[0] | |
# Use a Hugging Face model for more advanced logic | |
summarizer = pipeline("summarization") | |
next_step = summarizer(summary, max_length=50, min_length=25, do_sample=False)[0]['summary_text'] | |
return summary, next_step | |
# Function to save an agent's prompt to a file and commit to the Hugging Face repository | |
def save_agent_to_file(agent): | |
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository.""" | |
agents_path = os.path.join(PROJECT_ROOT, AGENT_DIRECTORY) | |
if not os.path.exists(agents_path): | |
os.makedirs(agents_path) | |
agent_file = os.path.join(agents_path, f"{agent.name}.txt") | |
config_file = os.path.join(agents_path, f"{agent.name}Config.txt") | |
with open(agent_file, "w") as file: | |
file.write(agent.create_agent_prompt()) | |
with open(config_file, "w") as file: | |
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") | |
st.session_state.available_agents.append(agent.name) | |
commit_and_push_changes(f"Add agent {agent.name}") | |
# Function to load an agent's prompt from a file | |
def load_agent_prompt(agent_name): | |
"""Loads an agent prompt from a file.""" | |
agent_file = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") | |
if os.path.exists(agent_file): | |
with open(agent_file, "r") as file: | |
agent_prompt = file.read() | |
return agent_prompt | |
else: | |
return None | |
# Function to create an agent from text input | |
def create_agent_from_text(name, text): | |
skills = text.split('\n') | |
agent = AIAgent(name, "AI agent created from text input.", skills) | |
save_agent_to_file(agent) | |
return agent.create_agent_prompt() | |
# Chat interface using a selected agent | |
def chat_interface_with_agent(input_text, agent_name): | |
""" | |
Provides a chat interface using a selected AI agent. | |
Loads the agent's prompt and uses a conversational model to generate responses. | |
Args: | |
input_text (str): The user's input text. | |
agent_name (str): The name of the selected AI agent. | |
Returns: | |
str: The AI agent's response. | |
""" | |
agent_prompt = load_agent_prompt(agent_name) | |
if agent_prompt is None: | |
return f"Agent {agent_name} not found." | |
# Combine agent prompt with user input | |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" | |
# Generate chatbot response | |
chatbot_response = conversational_generator(combined_input, max_length=150, min_length=30, do_sample=True)[0]['generated_text'] | |
return chatbot_response | |
# Chat interface (default) | |
def chat_interface(input_text): | |
""" | |
Provides a general chat interface using a conversational model. | |
Args: | |
input_text (str): The user's input text. | |
Returns: | |
str: The chatbot's response. | |
""" | |
# Generate response | |
response = conversational_generator(input_text, max_length=150, min_length=30, do_sample=True)[0]['generated_text'] | |
return response | |
# Workspace interface for creating projects | |
def workspace_interface(project_name): | |
""" | |
Creates a new project workspace. | |
Args: | |
project_name (str): The name of the project. | |
Returns: | |
str: A message indicating the status of the project creation. | |
""" | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(PROJECT_ROOT): | |
os.makedirs(PROJECT_ROOT) | |
if not os.path.exists(project_path): | |
st.session_state.workspace_projects[project_name] = {"files": []} | |
st.session_state.current_state['workspace_chat']['project_name'] = project_name | |
commit_and_push_changes(f"Create project {project_name}") | |
return f"Project {project_name} created successfully." | |
else: | |
return f"Project {project_name} already exists." | |
# Function to add code to the workspace | |
def add_code_to_workspace(project_name, code, file_name): | |
""" | |
Adds code to a specified file in a project workspace. | |
Args: | |
project_name (str): The name of the project. | |
code (str): The code to be added. | |
file_name (str): The name of the file. | |
Returns: | |
str: A message indicating the status of the code addition. | |
""" | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if os.path.exists(project_path): | |
file_path = os.path.join(project_path, file_name) | |
with open(file_path, "w") as file: | |
file.write(code) | |
st.session_state.workspace_projects[project_name]["files"].append(file_name) | |
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} | |
commit_and_push_changes(f"Add code to {file_name} in project {project_name}") | |
return f"Code added to {file_name} in project {project_name} successfully." | |
else: | |
return f"Project {project_name} does not exist." | |
# Terminal interface with optional project context | |
def terminal_interface(command, project_name=None): | |
""" | |
Executes a terminal command with optional project context. | |
Args: | |
command (str): The terminal command to execute. | |
project_name (str, optional): The name of the project to execute the command in. Defaults to None. | |
Returns: | |
str: The output of the terminal command. | |
""" | |
if project_name: | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
if not os.path.exists(project_path): | |
return f"Project {project_name} does not exist." | |
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) | |
else: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
if result.returncode == 0: | |
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout | |
return result.stdout | |
else: | |
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr | |
return result.stderr | |
# Code editor interface for formatting and linting | |
def code_editor_interface(code): | |
""" | |
Provides a code editor interface with formatting and linting capabilities. | |
Args: | |
code (str): The code to be edited. | |
Returns: | |
tuple: A tuple containing the formatted code and any linting messages. | |
""" | |
try: | |
formatted_code = black.format_str(code, mode=black.FileMode()) | |
except black.NothingChanged: | |
formatted_code = code | |
result = StringIO() | |
sys.stdout = result | |
sys.stderr = result | |
pylint_stdout, pylint_stderr = lint.py_run(code, return_std=True) | |
sys.stdout = sys.stdout | |
sys.stderr = sys.stderr | |
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue() | |
st.session_state.current_state['toolbox']['formatted_code'] = formatted_code | |
st.session_state.current_state['toolbox']['lint_message'] = lint_message | |
return formatted_code, lint_message | |
# Function to summarize text using a summarization pipeline | |
def summarize_text(text): | |
""" | |
Summarizes a given text using a Hugging Face summarization pipeline. | |
Args: | |
text (str): The text to be summarized. | |
Returns: | |
str: The summarized text. | |
""" | |
summarizer = pipeline("summarization") | |
summary = summarizer(text, max_length=50, min_length=25, do_sample=False) | |
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text'] | |
return summary[0]['summary_text'] | |
# Function to perform sentiment analysis using a sentiment analysis pipeline | |
def sentiment_analysis(text): | |
""" | |
Performs sentiment analysis on a given text using a Hugging Face sentiment analysis pipeline. | |
Args: | |
text (str): The text to be analyzed. | |
Returns: | |
dict: The sentiment analysis result. | |
""" | |
analyzer = pipeline("sentiment-analysis") | |
sentiment = analyzer(text) | |
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0] | |
return sentiment[0] | |
# Function to translate code using the Hugging Face API | |
def translate_code(code, input_language, output_language): | |
""" | |
Translates code from one programming language to another using a Hugging Face translation pipeline. | |
Args: | |
code (str): The code to be translated. | |
input_language (str): The source programming language. | |
output_language (str): The target programming language. | |
Returns: | |
str: The translated code. | |
""" | |
# Define a dictionary to map programming languages to their corresponding file extensions | |
language_extensions = { | |
"Python": ".py", | |
"JavaScript": ".js", | |
"C++": ".cpp", | |
"Java": ".java", | |
# Add more languages and extensions as needed | |
} | |
# Add code to handle edge cases such as invalid input and unsupported programming languages | |
if input_language not in language_extensions: | |
raise ValueError(f"Invalid input language: {input_language}") | |
if output_language not in language_extensions: | |
raise ValueError(f"Invalid output language: {output_language}") | |
# Use the dictionary to map the input and output languages to their corresponding file extensions | |
input_extension = language_extensions[input_language] | |
output_extension = language_extensions[output_language] | |
# Translate the code using the Hugging Face API | |
translated_code = translator(code, max_length=1024)[0]['translation_text'] | |
# Return the translated code | |
st.session_state.current_state['toolbox']['translated_code'] = translated_code | |
return translated_code | |
# Function to generate code based on a code idea using the Hugging Face API | |
def generate_code(code_idea): | |
""" | |
Generates code based on a given code idea using a Hugging Face code generation pipeline. | |
Args: | |
code_idea (str): The code idea or description. | |
Returns: | |
str: The generated code. | |
""" | |
# Generate code using the Hugging Face API | |
generated_code = code_generator(f"```python\n{code_idea}\n```", max_length=512)[0]['generated_text'] | |
st.session_state.current_state['toolbox']['generated_code'] = generated_code | |
return generated_code | |
# Function to commit and push changes to the Hugging Face repository | |
def commit_and_push_changes(commit_message): | |
"""Commits and pushes changes to the Hugging Face repository.""" | |
commands = [ | |
"git add .", | |
f"git commit -m '{commit_message}'", | |
"git push" | |
] | |
for command in commands: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
if result.returncode != 0: | |
st.error(f"Error executing command '{command}': {result.stderr}") | |
break | |
# Streamlit App | |
st.title("AI Agent Creator") | |
# Sidebar navigation | |
st.sidebar.title("Navigation") | |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) | |
# AI Agent Creator | |
if app_mode == "AI Agent Creator": | |
st.header("Create an AI Agent from Text") | |
st.subheader("From Text") | |
agent_name = st.text_input("Enter agent name:") | |
text_input = st.text_area("Enter skills (one per line):") | |
if st.button("Create Agent"): | |
agent_prompt = create_agent_from_text(agent_name, text_input) | |
st.success(f"Agent '{agent_name}' created and saved successfully.") | |
st.session_state.available_agents.append(agent_name) | |
# Tool Box | |
elif app_mode == "Tool Box": | |
st.header("AI-Powered Tools") | |
# Chat Interface | |
st.subheader("Chat with CodeCraft") | |
chat_input = st.text_area("Enter your message:") | |
if st.button("Send"): | |
if chat_input.startswith("@"): | |
agent_name = chat_input.split(" ")[0][1:] | |
chat_input = " ".join(chat_input.split(" ")[1:]) | |
chat_response = chat_interface_with_agent(chat_input, agent_name) | |
else: | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Terminal Interface | |
st.subheader("Terminal") | |
terminal_input = st.text_input("Enter a command:") | |
if st.button("Run"): | |
terminal_output = terminal_interface(terminal_input) | |
st.session_state.terminal_history.append((terminal_input, terminal_output)) | |
st.code(terminal_output, language="bash") | |
# Code Editor Interface | |
st.subheader("Code Editor") | |
code_editor = st.text_area("Write your code:", height=300) | |
if st.button("Format & Lint"): | |
formatted_code, lint_message = code_editor_interface(code_editor) | |
st.code(formatted_code, language="python") | |
st.info(lint_message) | |
# Text Summarization Tool | |
st.subheader("Summarize Text") | |
text_to_summarize = st.text_area("Enter text to summarize:") | |
if st.button("Summarize"): | |
summary = summarize_text(text_to_summarize) | |
st.write(f"Summary: {summary}") | |
# Sentiment Analysis Tool | |
st.subheader("Sentiment Analysis") | |
sentiment_text = st.text_area("Enter text for sentiment analysis:") | |
if st.button("Analyze Sentiment"): | |
sentiment = sentiment_analysis(sentiment_text) | |
st.write(f"Sentiment: {sentiment}") | |
# Text Translation Tool (Code Translation) | |
st.subheader("Translate Code") | |
code_to_translate = st.text_area("Enter code to translate:") | |
source_language = st.text_input("Enter source language (e.g. 'Python'):") | |
target_language = st.text_input("Enter target language (e.g. 'JavaScript'):") | |
if st.button("Translate Code"): | |
translated_code = translate_code(code_to_translate, source_language, target_language) | |
st.code(translated_code, language=target_language.lower()) | |
# Code Generation | |
st.subheader("Code Generation") | |
code_idea = st.text_input("Enter your code idea:") | |
if st.button("Generate Code"): | |
generated_code = generate_code(code_idea) | |
st.code(generated_code, language="python") | |
# Display Preset Commands | |
st.subheader("Preset Commands") | |
preset_commands = { | |
"Create a new project": "create_project('project_name')", | |
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')", | |
"Run terminal command": "terminal_interface('command', 'project_name')", | |
"Generate code": "generate_code('code_idea')", | |
"Summarize text": "summarize_text('text')", | |
"Analyze sentiment": "sentiment_analysis('text')", | |
"Translate code": "translate_code('code', 'source_language', 'target_language')", | |
} | |
for command_name, command in preset_commands.items(): | |
st.write(f"{command_name}: `{command}`") | |
# Workspace Chat App | |
elif app_mode == "Workspace Chat App": | |
st.header("Workspace Chat App") | |
# Project Workspace Creation | |
st.subheader("Create a New Project") | |
project_name = st.text_input("Enter project name:") | |
if st.button("Create Project"): | |
workspace_status = workspace_interface(project_name) | |
st.success(workspace_status) | |
# Add Code to Workspace | |
st.subheader("Add Code to Workspace") | |
code_to_add = st.text_area("Enter code to add to workspace:") | |
file_name = st.text_input("Enter file name (e.g. 'app.py'):") | |
if st.button("Add Code"): | |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) | |
st.success(add_code_status) | |
# Terminal Interface with Project Context | |
st.subheader("Terminal (Workspace Context)") | |
terminal_input = st.text_input("Enter a command within the workspace:") | |
if st.button("Run Command"): | |
terminal_output = terminal_interface(terminal_input, project_name) | |
st.code(terminal_output, language="bash") | |
# Chat Interface for Guidance | |
st.subheader("Chat with CodeCraft for Guidance") | |
chat_input = st.text_area("Enter your message for guidance:") | |
if st.button("Get Guidance"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Display Chat History | |
st.subheader("Chat History") | |
for user_input, response in st.session_state.chat_history: | |
st.write(f"User: {user_input}") | |
st.write(f"CodeCraft: {response}") | |
# Display Terminal History | |
st.subheader("Terminal History") | |
for command, output in st.session_state.terminal_history: | |
st.write(f"Command: {command}") | |
st.code(output, language="bash") | |
# Display Projects and Files | |
st.subheader("Workspace Projects") | |
for project, details in st.session_state.workspace_projects.items(): | |
st.write(f"Project: {project}") | |
for file in details['files']: | |
st.write(f" - {file}") | |
# Chat with AI Agents | |
st.subheader("Chat with AI Agents") | |
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents) | |
agent_chat_input = st.text_area("Enter your message for the agent:") | |
if st.button("Send to Agent"): | |
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent) | |
st.session_state.chat_history.append((agent_chat_input, agent_chat_response)) | |
st.write(f"{selected_agent}: {agent_chat_response}") | |
# Automate Build Process | |
st.subheader("Automate Build Process") | |
if st.button("Automate"): | |
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now | |
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects) | |
st.write("Autonomous Build Summary:") | |
st.write(summary) | |
st.write("Next Step:") | |
st.write(next_step) | |
# Advanced Code Editor (Optional) | |
st.subheader("Advanced Code Editor") | |
selected_file = st.selectbox("Select a file from the workspace", st.session_state.workspace_projects[project_name]['files']) | |
file_path = os.path.join(PROJECT_ROOT, project_name, selected_file) | |
if os.path.exists(file_path): | |
with open(file_path, "r") as file: | |
file_content = file.read() | |
code_editor = st_ace( | |
file_content, | |
language="python", | |
theme="monokai", | |
height=300, | |
key="ace_editor", | |
) | |
if st.button("Save Changes"): | |
with open(file_path, "w") as file: | |
file.write(code_editor) | |
st.success(f"Changes saved to {selected_file}") | |
commit_and_push_changes(f"Update {selected_file}") | |
else: | |
st.warning(f"File {selected_file} not found in the workspace.") | |
# Display current state for debugging | |
st.sidebar.subheader("Current State") | |
st.sidebar.json(st.session_state.current_state) | |
if __name__ == "__main__": | |
os.system("streamlit run app.py") |