Mistri / 1app.py
acecalisto3's picture
Update 1app.py
c4177ba verified
raw
history blame
18.6 kB
import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
# Set Hugging Face repository URL and project root path
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/Mistri"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Global state for session management
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# Define AIAgent class
class AIAgent:
def __init__(self, name, description, skills):
self.name = name
self.description = description
self.skills = skills
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history, workspace_projects):
"""
Autonomous build logic based on chat history and workspace projects.
"""
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
# Use a Hugging Face model for more advanced logic (e.g., a summarization model)
summarizer = pipeline("summarization")
next_step = summarizer(summary, max_length=50, min_length=25, do_sample=False)[0]['summary_text']
return summary, next_step
# Function to save an agent's prompt to a file and commit to the Hugging Face repository
def save_agent_to_file(agent):
"""Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_path, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
commit_and_push_changes(f"Add agent {agent.name}")
# Function to load an agent's prompt from a file
def load_agent_prompt(agent_name):
"""Loads an agent prompt from a file."""
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
# Function to create an agent from text input
def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
# Chat interface using a selected agent
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
# Load GPT-2 model
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Combine agent prompt with user input
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
# Truncate input text for model length limit
max_input_length = 900
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
# Generate chatbot response
outputs = model.generate(
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Workspace interface for creating projects
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(PROJECT_ROOT):
os.makedirs(PROJECT_ROOT)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {"files": []}
st.session_state.current_state['workspace_chat']['project_name'] = project_name
commit_and_push_changes(f"Create project {project_name}")
return f"Project {project_name} created successfully."
else:
return f"Project {project_name} already exists."
# Function to add code to the workspace
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]["files"].append(file_name)
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
return f"Code added to {file_name} in project {project_name} successfully."
else:
return f"Project {project_name} does not exist."
# Terminal interface with optional project context
def terminal_interface(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
return result.stdout
else:
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
return result.stderr
# Code editor interface for formatting and linting
def code_editor_interface(code):
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.NothingChanged:
formatted_code = code
result = StringIO()
sys.stdout = result
sys.stderr = result
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
sys.stdout = sys.stdout
sys.stderr = sys.stderr
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
st.session_state.current_state['toolbox']['formatted_code'] = formatted_code
st.session_state.current_state['toolbox']['lint_message'] = lint_message
return formatted_code, lint_message
# Function to summarize text using a summarization pipeline
def summarize_text(text):
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
return summary[0]['summary_text']
# Function to perform sentiment analysis using a sentiment analysis pipeline
def sentiment_analysis(text):
analyzer = pipeline("sentiment-analysis")
sentiment = analyzer(text)
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
return sentiment[0]
# Function to translate code using the OpenAI API
def translate_code(code, input_language, output_language):
# Define a dictionary to map programming languages to their corresponding file extensions
language_extensions = {
# ignore the specific languages right now, and continue to EOF
}
# Add code to handle edge cases such as invalid input and unsupported programming languages
if input_language not in language_extensions:
raise ValueError(f"Invalid input language: {input_language}")
if output_language not in language_extensions:
raise ValueError(f"Invalid output language: {output_language}")
# Use the dictionary to map the input and output languages to their corresponding file extensions
input_extension = language_extensions[input_language]
output_extension = language_extensions[output_language]
# Translate the code using the OpenAI API
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": prompt}
]
)
translated_code = response.choices[0].message['content'].strip()
# Return the translated code
translated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['translated_code'] = translated_code
return translated_code
# Function to generate code based on a code idea using the OpenAI API
def generate_code(code_idea):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
]
)
generated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
# Function to commit and push changes to the Hugging Face repository
def commit_and_push_changes(commit_message):
"""Commits and pushes changes to the Hugging Face repository."""
commands = [
"git add .",
f"git commit -m '{commit_message}'",
"git push"
]
for command in commands:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
st.error(f"Error executing command '{command}': {result.stderr}")
break
# Streamlit App
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
# AI Agent Creator
if app_mode == "AI Agent Creator":
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
# Tool Box
elif app_mode == "Tool Box":
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if chat_input.startswith("@"):
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
chat_response = chat_interface_with_agent(chat_input, agent_name)
else:
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g. 'Python'):")
target_language = st.text_input("Enter target language (e.g. 'JavaScript'):")
if st.button("Translate Code"):
# Use a Hugging Face translation model
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
translated_code = translator(code_to_translate, target_lang=target_language)[0]['translation_text']
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
# Use a Hugging Face code generation model
generator = pipeline("text-generation", model="bigscience/T0_3B")
generated_code = generator(code_idea, max_length=100, num_return_sequences=1, do_sample=True)[0]['generated_text']
st.code(generated_code, language="python")
# Display Preset Commands
st.subheader("Preset Commands")
preset_commands = {
"Create a new project": "create_project('project_name')",
"Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')",
"Run terminal command": "terminal_interface('command', 'project_name')",
"Generate code": "generate_code('code_idea')",
"Summarize text": "summarize_text('text')",
"Analyze sentiment": "sentiment_analysis('text')",
"Translate code": "translate_code('code', 'source_language', 'target_language')",
}
for command_name, command in preset_commands.items():
st.write(f"{command_name}: `{command}`")
# Workspace Chat App
elif app_mode == "Workspace Chat App":
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
# Chat with AI Agents
st.subheader("Chat with AI Agents")
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
agent_chat_input = st.text_area("Enter your message for the agent:")
if st.button("Send to Agent"):
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
st.write(f"{selected_agent}: {agent_chat_response}")
# Automate Build Process
st.subheader("Automate Build Process")
if st.button("Automate"):
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
st.write("Autonomous Build Summary:")
st.write(summary)
st.write("Next Step:")
st.write(next_step)
# Display current state for debugging
st.sidebar.subheader("Current State")
st.sidebar.json(st.session_state.current_state)