Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import random | |
import prompts | |
client = InferenceClient( | |
"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
agents =[ | |
"WEB_DEV", | |
"AI_SYSTEM_PROMPT", | |
"PYTHON_CODE_DEV", | |
"CODE_REVIEW_ASSISTANT", | |
"CONTENT_WRITER_EDITOR", | |
#"SOCIAL_MEDIA_MANAGER", | |
#"MEME_GENERATOR", | |
"QUESTION_GENERATOR", | |
#"IMAGE_GENERATOR", | |
"HUGGINGFACE_FILE_DEV", | |
] | |
def generate( | |
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, file=None | |
): | |
seed = random.randint(1,1111111111111111) | |
agent=prompts.WEB_DEV | |
if agent_name == "WEB_DEV": | |
agent = prompts.WEB_DEV_SYSTEM_PROMPT | |
if agent_name == "CODE_REVIEW_ASSISTANT": | |
agent = prompts.CODE_REVIEW_ASSISTANT | |
if agent_name == "CONTENT_WRITER_EDITOR": | |
agent = prompts.CONTENT_WRITER_EDITOR | |
if agent_name == "SOCIAL_MEDIA_MANAGER": | |
agent = prompts.SOCIAL_MEDIA_MANAGER | |
if agent_name == "AI_SYSTEM_PROMPT": | |
agent = prompts.AI_SYSTEM_PROMPT | |
if agent_name == "PYTHON_CODE_DEV": | |
agent = prompts.PYTHON_CODE_DEV | |
#if agent_name == "MEME_GENERATOR": | |
# agent = prompts.MEME_GENERATOR | |
if agent_name == "QUESTION_GENERATOR": | |
agent = prompts.QUESTION_GENERATOR | |
#if agent_name == "IMAGE_GENERATOR": | |
# agent = prompts.IMAGE_GENERATOR | |
if agent_name == "HUGGINGFACE_FILE_DEV": | |
agent = prompts.HUGGINGFACE_FILE_DEV | |
system_prompt=agent | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=seed, | |
) | |
# Process the uploaded file | |
if file: | |
file_content = file.read().decode("utf-8") | |
prompt = f"Here's the file I uploaded: {file_content} \n{prompt}" | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
# This line should be indented at the same level as the 'for' loop | |
return output | |
additional_inputs=[ | |
gr.Dropdown( | |
label="Agents", | |
choices=[s for s in agents], | |
value=agents[0], | |
interactive=True, | |
), | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=1048*10, | |
minimum=0, | |
maximum=1000*10, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
), | |
] | |
examples=[ | |
["Create a simple web application using Flask", agents[0], None, None, None, None, ], | |
["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ], | |
["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ], | |
["Write a shell script to automate the deployment of a web application to a server", agents[3], None, None, None, None, ], | |
["Generate a SQL query to retrieve the top 10 most popular products by sales", agents[4], None, None, None, None, ], | |
["Write a Python script to generate a random password with a given length and complexity", agents[2], None, None, None, None, ], | |
["Create a simple game in Unity using C#", agents[0], None, None, None, None, ], | |
["Generate a Java program to implement a binary search algorithm", agents[2], None, None, None, None, ], | |
["Write a shell script to monitor the CPU usage of a server", agents[1], None, None, None, None, ], | |
["Create a simple web application using React and Node.js", agents[0], None, None, None, None, ], | |
["Generate a Python script to perform a sentiment analysis on a given text", agents[2], None, None, None, None, ], | |
["Write a shell script to automate the backup of a MySQL database", agents[1], None, None, None, None, ], | |
["Create a simple game in Unreal Engine using C++", agents[3], None, None, None, None, ], | |
["Generate a Java program to implement a bubble sort algorithm", agents[2], None, None, None, None, ], | |
["Write a shell script to monitor the memory usage of a server", agents[1], None, None, None, None, ], | |
["Create a simple web application using Angular and Node.js", agents[0], None, None, None, None, ], | |
["Generate a Python script to perform a text classification on a given dataset", agents[2], None, None, None, None, ], | |
["Write a shell script to automate the installation of a software package on a server", agents[1], None, None, None, None, ], | |
["Create a simple game in Godot using GDScript", agents[3], None, None, None, None, ], | |
["Generate a Java program to implement a merge sort algorithm", agents[2], None, None, None, None, ], | |
["Write a shell script to automate the cleanup of temporary files on a server", agents[1], None, None, None, None, ], | |
] | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="Mixtral 46.7B", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api=False) |