Mistri / app.py
acecalisto3's picture
Update app.py
9700ac4 verified
from huggingface_hub import InferenceClient
import gradio as gr
import random
import prompts
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"CODE_REVIEW_ASSISTANT",
"CONTENT_WRITER_EDITOR",
#"SOCIAL_MEDIA_MANAGER",
#"MEME_GENERATOR",
"QUESTION_GENERATOR",
#"IMAGE_GENERATOR",
"HUGGINGFACE_FILE_DEV",
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, file=None
):
seed = random.randint(1,1111111111111111)
agent=prompts.WEB_DEV
if agent_name == "WEB_DEV":
agent = prompts.WEB_DEV_SYSTEM_PROMPT
if agent_name == "CODE_REVIEW_ASSISTANT":
agent = prompts.CODE_REVIEW_ASSISTANT
if agent_name == "CONTENT_WRITER_EDITOR":
agent = prompts.CONTENT_WRITER_EDITOR
if agent_name == "SOCIAL_MEDIA_MANAGER":
agent = prompts.SOCIAL_MEDIA_MANAGER
if agent_name == "AI_SYSTEM_PROMPT":
agent = prompts.AI_SYSTEM_PROMPT
if agent_name == "PYTHON_CODE_DEV":
agent = prompts.PYTHON_CODE_DEV
#if agent_name == "MEME_GENERATOR":
# agent = prompts.MEME_GENERATOR
if agent_name == "QUESTION_GENERATOR":
agent = prompts.QUESTION_GENERATOR
#if agent_name == "IMAGE_GENERATOR":
# agent = prompts.IMAGE_GENERATOR
if agent_name == "HUGGINGFACE_FILE_DEV":
agent = prompts.HUGGINGFACE_FILE_DEV
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
# Process the uploaded file
if file:
file_content = file.read().decode("utf-8")
prompt = f"Here's the file I uploaded: {file_content} \n{prompt}"
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
# This line should be indented at the same level as the 'for' loop
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1000*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[
["Create a simple web application using Flask", agents[0], None, None, None, None, ],
["Generate a Python script to perform a linear regression analysis", agents[2], None, None, None, None, ],
["Create a Dockerfile for a Node.js application", agents[1], None, None, None, None, ],
["Write a shell script to automate the deployment of a web application to a server", agents[3], None, None, None, None, ],
["Generate a SQL query to retrieve the top 10 most popular products by sales", agents[4], None, None, None, None, ],
["Write a Python script to generate a random password with a given length and complexity", agents[2], None, None, None, None, ],
["Create a simple game in Unity using C#", agents[0], None, None, None, None, ],
["Generate a Java program to implement a binary search algorithm", agents[2], None, None, None, None, ],
["Write a shell script to monitor the CPU usage of a server", agents[1], None, None, None, None, ],
["Create a simple web application using React and Node.js", agents[0], None, None, None, None, ],
["Generate a Python script to perform a sentiment analysis on a given text", agents[2], None, None, None, None, ],
["Write a shell script to automate the backup of a MySQL database", agents[1], None, None, None, None, ],
["Create a simple game in Unreal Engine using C++", agents[3], None, None, None, None, ],
["Generate a Java program to implement a bubble sort algorithm", agents[2], None, None, None, None, ],
["Write a shell script to monitor the memory usage of a server", agents[1], None, None, None, None, ],
["Create a simple web application using Angular and Node.js", agents[0], None, None, None, None, ],
["Generate a Python script to perform a text classification on a given dataset", agents[2], None, None, None, None, ],
["Write a shell script to automate the installation of a software package on a server", agents[1], None, None, None, None, ],
["Create a simple game in Godot using GDScript", agents[3], None, None, None, None, ],
["Generate a Java program to implement a merge sort algorithm", agents[2], None, None, None, None, ],
["Write a shell script to automate the cleanup of temporary files on a server", agents[1], None, None, None, None, ],
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)