File size: 12,025 Bytes
bf1ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7904af9
8cbdf09
 
 
 
 
 
 
bf1ced6
 
1e5f517
 
 
707abde
1e5f517
bf1ced6
 
907f11e
8338839
8bc0b91
bf1ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907f11e
bf1ced6
 
 
 
 
 
 
 
 
707abde
bf1ced6
 
 
 
 
 
 
 
 
 
8338839
0dc4c29
 
 
 
 
 
 
6e0bec2
9c2bb60
 
 
 
 
 
 
89e6c61
f66c1dc
6bac8e1
bf1ced6
 
 
 
 
e67420d
bf1ced6
 
 
 
 
 
 
907f11e
bf1ced6
 
1316103
 
 
 
 
 
 
 
bf1ced6
1316103
 
 
 
 
 
 
 
 
 
b5fc613
bf1ced6
 
 
 
 
 
 
 
b5fc613
bf1ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5fc613
 
 
 
 
 
 
 
 
6bac8e1
 
 
bf1ced6
6bac8e1
 
 
 
 
 
9c2bb60
 
 
 
 
 
 
89e6c61
9c2bb60
 
89e6c61
9c2bb60
 
 
 
 
 
89e6c61
9c2bb60
 
 
 
 
89e6c61
9c2bb60
 
89e6c61
9c2bb60
 
 
 
 
 
 
 
89e6c61
9c2bb60
 
 
6bac8e1
bf1ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36bcd62
bf1ced6
8338839
 
53ad0f3
bf1ced6
 
 
c1b3675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7cee3
 
 
c1b3675
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re 
# from unsloth import FastLanguageModel 

import transformers
from transformers import BloomForCausalLM
from transformers import BloomForTokenClassification
from transformers import BloomForTokenClassification
from transformers import BloomTokenizerFast
import torch
class DocumentRetrievalAndGeneration:
    def __init__(self, embedding_model_name, lm_model_id, data_folder):
        # hf_token = os.getenv('HF_TOKEN')
        hf="hf_VuNNBwnFqlcKzV"
        token="vCfLXEBxyAOftxvlWpwf"
        self.hf_token=hf+token
        # print(HF_TOKEN,hf_token)
        self.all_splits = self.load_documents(data_folder)
        self.embeddings = SentenceTransformer(embedding_model_name)
        self.cpu_index = self.create_faiss_index()
        self.llm = self.initialize_llm2(lm_model_id)
        

    def load_documents(self, folder_path):
        loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
        all_splits = text_splitter.split_documents(documents)
        print('Length of documents:', len(documents))
        print("LEN of all_splits", len(all_splits))
        return all_splits

    def create_faiss_index(self):
        all_texts = [split.page_content for split in self.all_splits]
        embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
        index = faiss.IndexFlatL2(embeddings.shape[1])
        index.add(embeddings)
        return index

    def initialize_llm(self, model_id):
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config,token=self.hf_token)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        generate_text = pipeline(
            model=model,
            tokenizer=tokenizer,
            return_full_text=True,
            task='text-generation',
            temperature=0.6,
            max_new_tokens=256,
        )
        return generate_text
    def initialize_llm2(self,model_id):
        
        client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
        # except:
        #     try:
        #         pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
        #     except:
        #         pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct")
        # pipe = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")   
        # model_name = "mistralai/Mistral-7B-Instruct-v0.2"
        # pipeline = transformers.pipeline(
        #     "text-generation",
        #     model=model_name,
        #     model_kwargs={"torch_dtype": torch.bfloat16},
        #     device="cpu",
        # )

        
        # return generate_text

    def generate_response_with_timeout(self, model_inputs):
        try:
            with concurrent.futures.ThreadPoolExecutor() as executor:
                future = executor.submit(self.llm.model.generate, model_inputs, max_new_tokens=1000, do_sample=True)
                generated_ids = future.result(timeout=800)  # Timeout set to 60 seconds
            return generated_ids
        except concurrent.futures.TimeoutError:
            return "Text generation process timed out"
            raise TimeoutError("Text generation process timed out")
    
    def query_and_generate_response(self, query):
        query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
        distances, indices = self.cpu_index.search(np.array([query_embedding]), k=5)

        content = ""
        # for idx in indices[0]:
        #     content += "-" * 50 + "\n"
        #     content += self.all_splits[idx].page_content + "\n"
        #     distance=distances[0][idx]
        #     print("CHUNK", idx)
        #     print("Distance :",distance)
        #     print(self.all_splits[idx].page_content)
        #     print("############################")
        for idx in indices[0]:
            if idx < len(self.all_splits) and idx < len(distances[0]):
                content += "-" * 50 + "\n"
                content += self.all_splits[idx].page_content + "\n"
                distance = distances[0][idx]
                print("CHUNK", idx)
                print("Distance :", distance)
                print(self.all_splits[idx].page_content)
                print("############################")
            else:
                print(f"Index {idx} is out of bounds. Skipping.")
        # {query}
        prompt = f"""<s>
        You are a knowledgeable assistant with access to a comprehensive database. 
        I need you to answer my question and provide related information in a specific format.
        I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
        Here's what I need:
        Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
        content
        Here's my question:
        Query:
        Solution==>
        RETURN ONLY SOLUTION . IF THEIR IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS , RETURN " NO SOLUTION AVAILABLE"
        IF THE QUERY AND THE RETRIEVED CHUNKS DO NOT CORRELATE MEANINGFULLY, OR IF THE QUERY IS NOT RELEVANT TO TDA2 OR RELATED TOPICS, THEN "NO SOLUTION AVAILABLE."
        Example1
        Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
        Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
        
        Example2
        Query: "Can BQ25896 support I2C interface?",
        Solution: "Yes, the BQ25896 charger supports the I2C interface for communication."
        Example3
        Query: "Who is the fastest runner in the world",
        Solution:"NO SOLUTION AVAILABLE"
        Example4
        Query:"What is the price of latest apple MACBOOK "
        Solution:"NO SOLUTION AVAILABLE"
        </s>
        """
        messages = [{"role": "system", "content": prompt}]
        messages.append({"role": "user", "content": message})
        response = ""

        for message in client.chat_completion(messages,max_tokens=2048,stream=True,temperature=0.7):
            token = message.choices[0].delta.content
            response += token
        # yield response
        generated_response=response
        # messages = [{"role": "user", "content": prompt}]
        # encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
        # model_inputs = encodeds.to(self.llm.device)
        
        # start_time = datetime.now()
        # generated_ids = self.generate_response_with_timeout(model_inputs)
        # elapsed_time = datetime.now() - start_time

        # decoded = self.llm.tokenizer.batch_decode(generated_ids)
        # generated_response = decoded[0]
        #########################################################
        # messages = []
        # # Check if history is None or empty and handle accordingly
        # if history:
        #     for user_msg, assistant_msg in history:
        #         messages.append({"role": "user", "content": user_msg})
        #         messages.append({"role": "assistant", "content": assistant_msg})
        
        # # Always add the current user message
        # messages.append({"role": "user", "content": message})
        
        # # Construct the prompt using the pipeline's tokenizer
        # prompt = pipeline.tokenizer.apply_chat_template(
        #     messages,
        #     tokenize=False,
        #     add_generation_prompt=True
        # )
    
        # # Generate the response
        # terminators = [
        #     pipeline.tokenizer.eos_token_id,
        #     pipeline.tokenizer.convert_tokens_to_ids("")
        # ]
    
        # # Adjust the temperature slightly above given to ensure variety
        # adjusted_temp = temperature + 0.1
    
        # # Generate outputs with adjusted parameters
        # outputs = pipeline(
        #     prompt,
        #     max_new_tokens=max_new_tokens,
        #     do_sample=True,
        #     temperature=adjusted_temp,
        #     top_p=0.9
        # )
    
        # # Extract the generated text, skipping the length of the prompt
        # generated_text = outputs[0]["generated_text"]
        # generated_response = generated_text[len(prompt):]
        
        match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
        
        match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
        if match1:
            solution_text = match1.group(1).strip()
            if "Solution:" in solution_text:
                solution_text = solution_text.split("Solution:", 1)[1].strip()
        elif match2:
            solution_text = match2.group(1).strip()
        else:
            solution_text=generated_response
        print("Generated response:", generated_response)
        print("Time elapsed:", elapsed_time)
        print("Device in use:", self.llm.device)

        return solution_text, content

    def qa_infer_gradio(self, query):
        response = self.query_and_generate_response(query)
        return response

if __name__ == "__main__":
    print("starting...")
    embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
    # lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
    lm_model_id= "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"
    data_folder = 'text_files'

    doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)

    def launch_interface():
        css_code = """
            .gradio-container {
                background-color: #daccdb;
            }
            /* Button styling for all buttons */
            button {
                background-color: #927fc7; /* Default color for all other buttons */
                color: black;
                border: 1px solid black;
                padding: 10px;
                margin-right: 10px;
                font-size: 16px; /* Increase font size */
                font-weight: bold; /* Make text bold */
            }
            """
        EXAMPLES = ["What are the main types of blood cancer, and how do they differ in terms of symptoms, progression, and treatment options? ", 
                    "What are the latest advancements in the treatment of blood cancer, and how do they improve patient outcomes compared to traditional therapies?", 
                    "How do genetic factors and environmental exposures contribute to the risk of developing blood cancer, and what preventive measures can be taken?"]
        
        interface = gr.Interface(
            fn=doc_retrieval_gen.qa_infer_gradio,
            inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
            allow_flagging='never',
            examples=EXAMPLES,
            cache_examples=False,
            outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
            css=css_code
        )

        interface.launch(debug=True)

    launch_interface()