File size: 12,083 Bytes
bf1ced6 9e98221 7904af9 8cbdf09 bf1ced6 1e5f517 707abde 1e5f517 bf1ced6 907f11e 8338839 8bc0b91 bf1ced6 907f11e bf1ced6 707abde bf1ced6 8338839 0dc4c29 af73538 0dc4c29 6e0bec2 9c2bb60 89e6c61 f66c1dc 6bac8e1 bf1ced6 e67420d bf1ced6 907f11e bf1ced6 1316103 bf1ced6 1316103 b5fc613 bf1ced6 b5fc613 bf1ced6 b5fc613 5a9f772 b5fc613 af73538 b5fc613 6bac8e1 bf1ced6 6bac8e1 9c2bb60 89e6c61 9c2bb60 89e6c61 9c2bb60 89e6c61 9c2bb60 89e6c61 9c2bb60 89e6c61 9c2bb60 89e6c61 9c2bb60 6bac8e1 bf1ced6 2c90d7d fa8618b bf1ced6 36bcd62 bf1ced6 8338839 53ad0f3 bf1ced6 c1b3675 542a973 c1b3675 542a973 c1b3675 ad7cee3 c1b3675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from huggingface_hub import InferenceClient
# from unsloth import FastLanguageModel
import transformers
from transformers import BloomForCausalLM
from transformers import BloomForTokenClassification
from transformers import BloomForTokenClassification
from transformers import BloomTokenizerFast
import torch
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
# hf_token = os.getenv('HF_TOKEN')
hf="hf_VuNNBwnFqlcKzV"
token="vCfLXEBxyAOftxvlWpwf"
self.hf_token=hf+token
# print(HF_TOKEN,hf_token)
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.cpu_index = self.create_faiss_index()
self.llm = self.initialize_llm2(lm_model_id)
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
return all_splits
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
return index
def initialize_llm(self, model_id):
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config,token=self.hf_token)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generate_text = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.6,
max_new_tokens=256,
)
return generate_text
def initialize_llm2(self,model_id):
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# except:
# try:
# pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
# except:
# pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct")
# pipe = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
# model_name = "mistralai/Mistral-7B-Instruct-v0.2"
# pipeline = transformers.pipeline(
# "text-generation",
# model=model_name,
# model_kwargs={"torch_dtype": torch.bfloat16},
# device="cpu",
# )
# return generate_text
def generate_response_with_timeout(self, model_inputs):
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(self.llm.model.generate, model_inputs, max_new_tokens=1000, do_sample=True)
generated_ids = future.result(timeout=800) # Timeout set to 60 seconds
return generated_ids
except concurrent.futures.TimeoutError:
return "Text generation process timed out"
raise TimeoutError("Text generation process timed out")
def query_and_generate_response(self, query):
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.cpu_index.search(np.array([query_embedding]), k=5)
content = ""
# for idx in indices[0]:
# content += "-" * 50 + "\n"
# content += self.all_splits[idx].page_content + "\n"
# distance=distances[0][idx]
# print("CHUNK", idx)
# print("Distance :",distance)
# print(self.all_splits[idx].page_content)
# print("############################")
for idx in indices[0]:
if idx < len(self.all_splits) and idx < len(distances[0]):
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
distance = distances[0][idx]
print("CHUNK", idx)
print("Distance :", distance)
print(self.all_splits[idx].page_content)
print("############################")
else:
print(f"Index {idx} is out of bounds. Skipping.")
# {query}
prompt = f"""<s>
You are a knowledgeable assistant with access to a comprehensive database.
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
Here's what I need:
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
content
Here's my question:
Query:
Solution==>
RETURN ONLY SOLUTION . IF THEIR IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS , RETURN " NO SOLUTION AVAILABLE"
IF THE QUERY AND THE RETRIEVED CHUNKS DO NOT CORRELATE MEANINGFULLY, OR IF THE QUERY IS NOT RELEVANT TO TDA2 OR RELATED TOPICS, THEN "NO SOLUTION AVAILABLE."
Example1
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
Example2
Query: "Can BQ25896 support I2C interface?",
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication."
Example3
Query: "Who is the fastest runner in the world",
Solution:"NO SOLUTION AVAILABLE"
Example4
Query:"What is the price of latest apple MACBOOK "
Solution:"NO SOLUTION AVAILABLE"
</s>
"""
messages = [{"role": "system", "content": prompt}]
messages.append({"role": "user", "content": query})
response = ""
for message in self.client.chat_completion(messages,max_tokens=2048,stream=True,temperature=0.7):
token = message.choices[0].delta.content
response += token
# yield response
generated_response=response
# messages = [{"role": "user", "content": prompt}]
# encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
# model_inputs = encodeds.to(self.llm.device)
# start_time = datetime.now()
# generated_ids = self.generate_response_with_timeout(model_inputs)
# elapsed_time = datetime.now() - start_time
# decoded = self.llm.tokenizer.batch_decode(generated_ids)
# generated_response = decoded[0]
#########################################################
# messages = []
# # Check if history is None or empty and handle accordingly
# if history:
# for user_msg, assistant_msg in history:
# messages.append({"role": "user", "content": user_msg})
# messages.append({"role": "assistant", "content": assistant_msg})
# # Always add the current user message
# messages.append({"role": "user", "content": message})
# # Construct the prompt using the pipeline's tokenizer
# prompt = pipeline.tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True
# )
# # Generate the response
# terminators = [
# pipeline.tokenizer.eos_token_id,
# pipeline.tokenizer.convert_tokens_to_ids("")
# ]
# # Adjust the temperature slightly above given to ensure variety
# adjusted_temp = temperature + 0.1
# # Generate outputs with adjusted parameters
# outputs = pipeline(
# prompt,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# temperature=adjusted_temp,
# top_p=0.9
# )
# # Extract the generated text, skipping the length of the prompt
# generated_text = outputs[0]["generated_text"]
# generated_response = generated_text[len(prompt):]
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
if match1:
solution_text = match1.group(1).strip()
if "Solution:" in solution_text:
solution_text = solution_text.split("Solution:", 1)[1].strip()
elif match2:
solution_text = match2.group(1).strip()
else:
solution_text=generated_response
# print("Generated response:", generated_response)
# print("Time elapsed:", elapsed_time)
# print("Device in use:", self.llm.device)
return solution_text, content
def qa_infer_gradio(self, query):
response = self.query_and_generate_response(query)
return response
if __name__ == "__main__":
print("starting...")
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
# lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
lm_model_id= "unsloth/Phi-3-mini-4k-instruct-bnb-4bit"
data_folder = 'text_files'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
def launch_interface():
css_code = """
.gradio-container {
background-color: #ffffff;
}
/* Button styling for all buttons */
button {
background-color: #999999; /* Default color for all other buttons */
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px; /* Increase font size */
font-weight: bold; /* Make text bold */
}
"""
EXAMPLES = ["What are the main types of blood cancer, and how do they differ in terms of symptoms, progression, and treatment options? ",
"What are the latest advancements in the treatment of blood cancer, and how do they improve patient outcomes compared to traditional therapies?",
"How do genetic factors and environmental exposures contribute to the risk of developing blood cancer, and what preventive measures can be taken?"]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
css=css_code
)
interface.launch(debug=True)
launch_interface()
|