File size: 17,705 Bytes
72aebc1 b676165 24104d7 092ed9e b676165 24104d7 b676165 1393d5f 6658f37 54e6832 46f3018 c6a49dd b1d9638 f6c70f7 24104d7 f6c70f7 b676165 24104d7 b676165 300dfce 8d8aedf 300dfce b676165 300dfce 72aebc1 5afc810 72aebc1 e7e4a86 5afc810 b676165 24104d7 ca1744a 24104d7 ca1744a 24104d7 b676165 300dfce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import gradio as gr
from langchain-community.vectorstores import Chroma
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import langchain.chains.LLMChain
import langchain_core.prompts.PromptTemplate
from langchain_huggingface import HuggingFacePipeline
#Konstanten
ANTI_BOT_PW = os.getenv("CORRECT_VALIDATE")
PATH_WORK = "."
CHROMA_DIR = "/chroma/kkg"
CHROMA_PDF = './chroma/kkg/pdf'
CHROMA_WORD = './chroma/kkg/word'
CHROMA_EXCEL = './chroma/kkg/excel'
#HuggingFace Model name--------------------------------
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1"
# Hugging Face Token direkt im Code setzen
hf_token = os.getenv("HF_READ")
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HF_READ")
###############################################
#globale Variablen
##############################################
#nur bei ersten Anfrage splitten der Dokumente - um die Vektordatenbank entsprechend zu füllen
#splittet = False
#DB für Vektorstore
vektordatenbank = None
retriever = None
#############################################
# Allgemeine Konstanten
#Filepath zu temp Folder (temp) mit File von ausgewähltem chatverlauf
file_path_download = ""
####################################################
#aus einem Text-Prompt die Antwort von KI bekommen
#mit oder ohne RAG möglich
def generate_text (prompt, chatbot, history, vektordatenbank, websuche, top_p=0.6, temperature=0.2, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=35):
print("Text pur..............................")
if (prompt == ""):
raise gr.Error("Prompt ist erforderlich.")
try:
#oder an Hugging Face --------------------------
print("HF Anfrage.......................")
model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
#Prompt an history anhängen und einen Text daraus machen
history_text_und_prompt = generate_prompt_with_history(prompt, history)
#zusätzliche Dokumenten Splits aus DB zum Prompt hinzufügen (aus VektorDB - Chroma oder Mongo DB)
print("LLM aufrufen mit RAG: ...........")
result = rag_chain(llm, history_text_und_prompt, retriever) #für hugchat noch kein rag möglich...
#weitere Möglichkeit für Rag-Chain - dann auch für HF Modelle möglich, da kein llm in Langchain übergeben werden muss...
#result = rag_chain2(history_text_und_prompt, db, 5)
print("result regchain.....................")
print(result)
except Exception as e:
raise gr.Error(e)
return result, suche_im_Netz
########################################
# Bot- test gegen schädliche Bots die die Anwendung testen...
# Funktion zur Überprüfung der Benutzereingabe
# Funktion zur Überprüfung der Eingabe und Aktivierung der Hauptanwendung
def validate_input(user_input_validate, validate=False):
user_input_hashed = hash_input(user_input_validate)
if user_input_hashed == hash_input(ANTI_BOT_PW):
return "Richtig! Weiter gehts... ", True, gr.Textbox(visible=False), gr.Button(visible=False)
else:
return "Falsche Antwort!!!!!!!!!", False, gr.Textbox(label = "", placeholder="Bitte tippen Sie das oben im Moodle Kurs angegebene Wort ein, um zu beweisen, dass Sie kein Bot sind.", visible=True, scale= 5), gr.Button("Validieren", visible = True)
def custom_css():
return """
body, html {
background-color: #303030; /* Dunkler Hintergrund */
color:#353535;
}
"""
#nicht in Gebrauch...................................
def get_rag_response(question):
# Abfrage der relevanten Dokumente aus Chroma DB
docs = chroma_db.search(question, top_k=5)
passages = [doc['text'] for doc in docs]
links = [doc.get('url', 'No URL available') for doc in docs]
# Generieren der Antwort
context = " ".join(passages)
qa_input = {"question": question, "context": context}
answer = qa_pipeline(qa_input)['answer']
# Zusammenstellen der Ausgabe
response = {
"answer": answer,
"documents": [{"link": link, "passage": passage} for link, passage in zip(links, passages)]
}
return response
#Eingaben der GUI verarbeiten
def generate_auswahl(prompt_in, file, file_history, chatbot, history, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,top_k=5, validate=False):
global vektordatenbank, retriever
#nur wenn man sich validiert hat, kann die Anwendung los legen
if (validate and not prompt_in == "" and not prompt_in == None):
# Vektorstore initialisieren
#falls schon ein File hochgeladen wurde, ist es in history_file gespeichert - falls ein neues File hochgeladen wurde, wird es anschließend neu gesetzt
neu_file = file_history
#prompt normalisieren bevor er an die KIs geht
prompt = normalise_prompt(prompt_in)
#muss nur einmal ausgeführt werden...
if vektordatenbank == None:
print("db neu aufbauen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1")
splits = document_loading_splitting()
vektordatenbank, retriever = document_storage_chroma(splits)
#kein Bild hochgeladen -> auf Text antworten...
status = "Antwort der KI ..."
if (file == None and file_history == None):
result, status = generate_text(prompt, chatbot, history,vektordatenbank, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3, top_k=3)
history = history + [[prompt, result]]
else:
#Es wurde ein File neu angehängt -> das hochladen und dann Prompt bearbeiten
#das history_fiel muss neu gesetzt werden
if (file != None):
# file_history wird neu gesetzt in der Rückgabe dieser Funktion...
neu_file = file
#File hochladen in Chroma und dann Antwort generieren
result = generate_text_zu_doc(neu_file, prompt, k, rag_option, chatbot, history, vektordatenbank)
#die history erweitern - abhängig davon, ob gerade ein file hochgeladen wurde oder nicht
if (file != None):
history = history + [[(file,), None],[prompt, result]]
else:
history = history + [[prompt, result]]
chatbot[-1][1] = ""
for character in result:
chatbot[-1][1] += character
time.sleep(0.03)
yield chatbot, history, None, neu_file, status
if shared_state.interrupted:
shared_state.recover()
try:
yield chatbot, history, None, neu_file, "Stop: Success"
except:
pass
else: #noch nicht validiert, oder kein Prompt
return chatbot, history, None, file_history, "Erst validieren oder einen Prompt eingeben!"
#############################################################################################
# Start Gui Vorabfrage
# Validierungs-Interface - Bots weghalten...
print ("Start GUI Vorabfrage")
#################################################################################################
print ("Start GUI Hauptanwendung")
with open("custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
#Add Inputs für Tab 2
additional_inputs = [
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True),
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True)
]
with gr.Blocks(css=customCSS, theme=themeAlex) as demo:
#validiert speichern
validate = gr.State(False)
#Session Variablen, um Weete zu speichern, auch wenn die Felder in der GUI bereits wieder leer sind
# history parallel zu chatbot speichern - da in chatbot bei Bildern zum Anzeigen in der GUI die Bilder speziell formatiert werden,
# für die Übergabe an die ki aber der Pfad zum Bild behalten werden muss - was in der history der Fall ist!
history = gr.State([])
uploaded_file_paths= gr.State([])
history3 = gr.State([])
uploaded_file_paths3= gr.State([])
#alle chats einer Session sammeln
chats = gr.State({})
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question = gr.State("")
#für die anderen Tabs auch...
#damit der Prompt auch nach dem upload in die History noch für predicts_args verfügbar ist
user_question2 = gr.State("")
user_question3 = gr.State("")
attached_file = gr.State(None)
attached_file_history = gr.State(None)
attached_file3 = gr.State(None)
attached_file_history3 = gr.State(None)
status_display = gr.State("")
status_display2 = gr.State("")
status_display3 = gr.State("")
################################################
# Tab zum Chatbot mit Text oder Bildeingabe
################################################
gr.Markdown(description_top)
with gr.Row():
user_input_validate =gr.Textbox(label= "Bitte das oben im Moodle Kurs angegebene Wort eingeben, um die Anwendung zu starten", visible=True, interactive=True, scale= 7)
validate_btn = gr.Button("Validieren", visible = True)
#validation_result = gr.Text(label="Validierungsergebnis")
with gr.Tab("KKG Chatbot"):
with gr.Row():
#gr.HTML("LI Chatot")
status_display = gr.Markdown("Antwort der KI ...", visible = True) #, elem_id="status_display")
with gr.Row():
with gr.Column(scale=5):
with gr.Row():
chatbot = gr.Chatbot(elem_id="li-chat",show_copy_button=True)
with gr.Row():
with gr.Column(scale=12):
user_input = gr.Textbox(
show_label=False, placeholder="Gib hier deinen Prompt ein...",
container=False
)
with gr.Column(min_width=70, scale=1):
submitBtn = gr.Button("Senden")
with gr.Column(min_width=70, scale=1):
cancelBtn = gr.Button("Stop")
with gr.Row():
image_display = gr.Image( visible=False)
upload = gr.UploadButton("📁", file_types=["image", "pdf", "docx", "pptx", "xlsx"], scale = 10)
emptyBtn = gr.ClearButton([user_input, chatbot, history, attached_file, attached_file_history, image_display], value="🧹 Neue Session", scale=10)
with gr.Column():
with gr.Column(min_width=50, scale=1):
with gr.Tab(label="Chats ..."):
#Geht nicht, da für alle gleichzeitig sichtbar
#chat_selector = gr.CheckboxGroup(label="", choices=update_chat_options())
#download_button = gr.Button("Download ausgewählte Chats")
file_download = gr.File(label="Noch keine Chatsverläufe", visible=True, interactive = False, file_count="multiple",)
with gr.Tab(label="Parameter"):
#gr.Markdown("# Parameters")
rag_option = gr.Radio(["Aus", "An"], label="KKG Erweiterungen (RAG)", value = "Aus")
model_option = gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "OpenAI")
websuche = gr.Radio(["Aus", "An"], label="Web-Suche", value = "Aus")
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
visible=False,
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=35,
step=1,
interactive=True,
label="Top-k",
visible=False,
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
visible=False
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=512,
value=512,
step=8,
interactive=True,
label="Max Generation Tokens",
visible=False,
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=128,
interactive=True,
label="Max History Tokens",
visible=False,
)
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=False)
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=False)
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1, visible = False)
gr.Markdown(description)
######################################
# Events und Übergabe Werte an Funktionen
#######################################
######################################
# Für Tab 1: Chatbot
#Argumente für generate Funktion als Input
predict_args = dict(
fn=generate_auswahl,
inputs=[
user_question,
attached_file,
attached_file_history,
chatbot,
history,
anzahl_docs,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
repetition_penalty,
top_k,
websuche,
validate
],
outputs=[chatbot, history, attached_file, attached_file_history, status_display],
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
)
# Chatbot
transfer_input_args = dict(
fn=add_text, inputs=[chatbot, history, user_input, attached_file, attached_file_history], outputs=[chatbot, history, user_question, attached_file, attached_file_history, image_display , user_input], show_progress=True
)
##############################################
# Button Events....
#Validation Button
# Event-Handler für die Validierung
validate_btn.click(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
user_input_validate.submit(validate_input, inputs=[user_input_validate, validate], outputs=[status_display, validate, user_input_validate, validate_btn])
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args)
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args)
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) #.then(**predict_args)
emptyBtn.click(clear_all, [history, uploaded_file_paths, chats], [attached_file, image_display, uploaded_file_paths, history, file_download, chats])
#Bild Anzeige neben dem Button wieder entfernen oder austauschen..
image_display.select(file_loeschen, [], [attached_file, image_display])
#download_button.click(fn=download_chats, inputs=chat_selector, outputs=[file_download])
#Berechnung oder Ausgabe anhalten (kann danach fortgesetzt werden)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=[predict_event1,predict_event2, predict_event3])
|