alexkueck commited on
Commit
79e59c6
·
verified ·
1 Parent(s): 91de823

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -206,12 +206,17 @@ def generate_text (prompt, chatbot, history, vektordatenbank, retriever, top_p=0
206
  #oder an Hugging Face --------------------------
207
  print("HF Anfrage.......................")
208
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
209
- llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
210
- #llm = HuggingFaceChain(model=MODEL_NAME_HF, model_kwargs={"temperature": 0.5, "max_length": 128})
211
  # Erstelle eine Pipeline mit den gewünschten Parametern
212
- #pipe = pipeline("text-generation", model=MODEL_NAME_HF , model_kwargs=model_kwargs)
213
- # Erstelle eine HuggingFacePipeline-Kette
214
- #llm = HuggingFacePipeline(pipeline=pipe)
 
 
 
 
 
215
 
216
  #Prompt an history anhängen und einen Text daraus machen
217
  history_text_und_prompt = generate_prompt_with_history(prompt, history)
@@ -222,6 +227,7 @@ def generate_text (prompt, chatbot, history, vektordatenbank, retriever, top_p=0
222
  result = rag_chain(llm, history_text_und_prompt, retriever)
223
  print("result regchain.....................")
224
  print(result)
 
225
 
226
  except Exception as e:
227
  raise gr.Error(e)
 
206
  #oder an Hugging Face --------------------------
207
  print("HF Anfrage.......................")
208
  model_kwargs={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty}
209
+ #llm = HuggingFaceHub(repo_id=repo_id, model_kwargs=model_kwargs)
210
+
211
  # Erstelle eine Pipeline mit den gewünschten Parametern
212
+ #pipe = pipeline("text-generation", model=MODEL_NAME_HF, config={"temperature": 0.5, "max_length": 512, "num_return_sequences": 1, "top_k": top_k, "top_p": top_p, "repetition_penalty": repetition_penalty})
213
+
214
+ # Erstelle eine HuggingFaceEndPoints-Instanz mit den entsprechenden Endpunkt-Parametern
215
+ llm = HuggingFaceEndPoints(
216
+ endpoint_url=f"https://api-inference.huggingface.co/models/{MODEL_NAME_HF}",
217
+ api_key=hf_token,
218
+ model_kwargs=model_kwargs
219
+ )
220
 
221
  #Prompt an history anhängen und einen Text daraus machen
222
  history_text_und_prompt = generate_prompt_with_history(prompt, history)
 
227
  result = rag_chain(llm, history_text_und_prompt, retriever)
228
  print("result regchain.....................")
229
  print(result)
230
+ print("Ene result............................")
231
 
232
  except Exception as e:
233
  raise gr.Error(e)