rewardedsoups / pages /03_馃_Locomotion.py
alexrame
wip
4131917
raw
history blame
8.33 kB
import streamlit as st
from PIL import Image
import codecs
import streamlit.components.v1 as components
from utils import inject_custom_css
import streamlit as st
from streamlit_plotly_events import plotly_events
import pickle
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import typing as tp
plt.style.use('default')
shapes=[
dict(
type="rect",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=1,
y1=1,
line=dict(
color="Black",
width=2,
),
)
]
import colorsys
def interpolate_color(color1, color2, factor):
"""Interpolates between two RGB colors. Factor is between 0 and 1."""
color1 = colorsys.rgb_to_hls(int(color1[1:3], 16)/255.0, int(color1[3:5], 16)/255.0, int(color1[5:], 16)/255.0)
color2 = colorsys.rgb_to_hls(int(color2[1:3], 16)/255.0, int(color2[3:5], 16)/255.0, int(color2[5:], 16)/255.0)
new_color = [color1[i] * (1 - factor) + color2[i] * factor for i in range(3)]
new_color = colorsys.hls_to_rgb(*new_color)
return '#{:02x}{:02x}{:02x}'.format(int(new_color[0]*255), int(new_color[1]*255), int(new_color[2]*255))
color1 = "#fa7659"
color2 = "#6dafd7"
def plot_pareto(dict_results: tp.Dict):
keys = list(dict_results["wa"][0].keys())
lambda_key, reward2_key, reward1_key = keys
# Series for "wa"
dict_results["wa"] = [x for i,x in enumerate(dict_results["wa"]) if i%2==0]
lambda_values_wa = [item[lambda_key] for item in dict_results["wa"]][::-1]
reward1_values_wa = [item[reward1_key] for item in dict_results["wa"]][::-1]
reward2_values_wa = [item[reward2_key] for item in dict_results["wa"]][::-1]
# Series for "init"
reward1_values_init = [item[reward1_key] for item in dict_results["init"]]
reward2_values_init = [item[reward2_key] for item in dict_results["init"]]
layout = go.Layout(autosize=False,width=1000,height=1000)
fig = go.Figure(layout=layout)
for i in range(len(reward1_values_wa) - 1):
fig.add_trace(go.Scatter(
x=reward1_values_wa[i:i+2],
y=reward2_values_wa[i:i+2],
mode='lines',
hoverinfo='skip',
line=dict(
color=interpolate_color(color1, color2, i/(len(reward1_values_wa)-1)),
width=2
),
showlegend=False
))
# Plot for "wa"
fig.add_trace(
go.Scatter(
x=reward1_values_wa,
y=reward2_values_wa,
mode='markers',
name='Rewarded soups: 0鈮の烩墹1',
hoverinfo='text',
hovertext=[f'位={lmbda}' for lmbda in lambda_values_wa],
marker=dict(
color=[
interpolate_color(color1, color2, i / len(lambda_values_wa))
for i in range(len(lambda_values_wa))
],
size=10
)
)
)
# Plot for "morl"
fig.add_trace(
go.Scatter(
x=[6400.],
y=[3300.],
mode='markers',
name='MORL: 渭=0.5',
hoverinfo='skip',
marker=dict(color='#A45EE9', size=15, symbol="star"),
)
)
# Plot for "init"
fig.add_trace(
go.Scatter(
x=reward1_values_init,
y=reward2_values_init,
mode='markers',
name='Pre-trained init',
hoverinfo='skip',
marker=dict(color='#9f9bc8', size=15, symbol="star"),
)
)
fig.update_layout(
xaxis=dict(
range=[3000, 7000],
nticks=6,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Risky reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
yaxis=dict(
range=[-1000, 4500],
nticks=7,
showticklabels=True,
ticks='outside',
tickfont=dict(size=18,),
title=dict(text="Cautious reward", font=dict(size=18), standoff=10),
showgrid=False,
zeroline=False,
hoverformat='.2f'
),
font=dict(family="Roboto", size=12, color="Black"),
hovermode='x unified',
autosize=False,
width=500,
height=500,
margin=dict(l=100, r=50, b=150, t=20, pad=0),
paper_bgcolor="White",
plot_bgcolor="White",
shapes=shapes,
legend=dict(
x=0.5,
y=0.03,
traceorder="normal",
font=dict(family="Roboto", size=12, color="black"),
bgcolor="White",
bordercolor="Black",
borderwidth=1
)
)
return fig
def run():
st.write(
f"""
<link href='http://fonts.googleapis.com/css?family=Roboto' rel='stylesheet' type='text/css'>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML">
</script>
<h3 style='text-align: left;';>Making humanoid run more naturally with diverse engineered rewards</h3>""",unsafe_allow_html=True)
st.markdown(
r"""
Teaching humanoids to walk in a human-like manner serves as a benchmark to evaluate RL strategies for continuous control. One of the key challenges is shaping a suitable proxy reward, given the intricate coordination and balance involved in human locomotion. It is standard to consider the dense reward at each timestep: ${r(t)=velocity-\alpha \times \sum_t a^{2}_{t}}$, controlling the agent's velocity while penalizing wide actions. Yet, the penalty coefficient $\alpha$ is challenging to set. To tackle this, we devised two rewards in the Brax physics engine: a *risky* one with $\alpha=0$, and a *cautious* one $\alpha=1$.
Below in the interactive animation, you will see the humanoids trained with these two rewards: the humanoid for $\alpha=0$ is the fastest but the most chaotic, while the one for $\alpha=1$ is more cautious but slower. For intermediate values of $\lambda$, the policy is obtained by linear interpolation of those extreme weights, arguably resulting in smoother motion patterns.
""", unsafe_allow_html=True
)
st.markdown("""<h3 style='text-align: left;';>Click on a rewarded soup point!</h3>""",unsafe_allow_html=True)
files = []
for i in range(21):
filename = f'streamlit_app/data/locomotion/trajectories/{i}.html'
files.append(codecs.open(filename, "r", "utf-8").read())
files = [x for i,x in enumerate(files) if i%2==0]
row_0_1,row_0_2,row_0_3,row_0_4 = st.columns([3,1,1,1])
with row_0_1:
with open("streamlit_app/data/locomotion/pareto/humanoid_averse_taker_with_morl.pkl","rb") as f:
dict_results = pickle.load(f)
fig = plot_pareto(dict_results)
onclick = plotly_events(fig, click_event=True)
with row_0_4:
st.markdown(f"""<div style='text-align: left; color: {color1}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=1.0</div>""",unsafe_allow_html=True)
components.html(files[-1],width=150,height=300)
with row_0_3:
if len(onclick) > 0:
idx = onclick[-1]['pointIndex']
else:
idx = 5
st.markdown(
f"""<div style='text-align: left; color: {interpolate_color(color1, color2, round(1- idx/(len(files)-1),2))}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位={round(1-idx/(len(files)-1),2)}</div>""",
unsafe_allow_html=True
)
components.html(files[idx], width=150, height=300)
with row_0_2:
st.markdown(f"""<div style='text-align: left; color: {color2}; font-size: 30px; padding-right: 40px; padding-top: 20px;'>位=0.0</div>""",unsafe_allow_html=True)
components.html(files[0],width=150,height=300)
if __name__ == "__main__":
img = Image.open("streamlit_app/assets/images/icon.png")
st.set_page_config(page_title="Rewarded soups",page_icon=img,layout="wide")
inject_custom_css("streamlit_app/assets/styles.css")
st.set_option('deprecation.showPyplotGlobalUse', False)
run()