File size: 5,740 Bytes
bce439c
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
 
bce439c
 
0e14842
bce439c
 
 
0e14842
 
 
 
 
 
d3f9719
bce439c
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
 
0e14842
 
bce439c
0e14842
bce439c
 
 
 
a2b0660
0e14842
 
bce439c
0e14842
 
 
 
 
 
 
 
95f1c55
 
d3f9719
 
ce51fdb
95f1c55
bce439c
7a77fc4
ce51fdb
d3f9719
 
 
6881507
 
 
6e97af5
6881507
6e97af5
ce51fdb
 
0e14842
 
 
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
 
bce439c
0e14842
bce439c
0e14842
 
 
 
 
bce439c
0e14842
bce439c
fda85af
 
 
 
 
 
 
 
8937a7d
 
967d51e
8937a7d
edf7d8c
a2b0660
8937a7d
bce439c
ce51fdb
 
 
 
 
0a94726
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
 
0e14842
 
fda85af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import random

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alvarobartt/ghibli-characters-flux-lora"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU(duration=80)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]

    return image, seed


examples = [
    (
        "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
        " standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
        " sunlight illuminating the scene, a gentle breeze rustling the leaves"
    ),
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# FLUX.1 Studio Ghibli LoRA")
        gr.Markdown(
            "[alvarobartt/ghibli-characters-flux-lora](https://huggingface.co/alvarobartt/ghibli-characters-flux-lora)"
            " is a LoRA fine-tune of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)"
            " with [alvarobartt/ghibli-characters](https://huggingface.co/datasets/alvarobartt/ghibli-characters)."
        )

        with gr.Accordion("How to generate nice prompts?", open=False):
            gr.Markdown(
                "What worked best for me to generate high-quality prompts of well-known characters,"
                " was to prompt either [Claude 3 Haiku](https://claude.ai), [GPT4-o](https://chatgpt.com/),"
                " or [Perplexity](https://www.perplexity.ai/) with:\n\nYou are an"
                " expert prompt writer for diffusion text to image models, and you've been provided"
                " the following prompt template:\n\n\"Ghibli style [character description] with"
                " [distinctive features], [action or pose], [environment or background],"
                " [lighting or atmosphere], [additional details].\"\n\nCould you create a prompt"
                " to generate [CHARACTER NAME] as a Studio Ghibli character following that template?"
                " [MORE DETAILS IF NEEDED]\n"
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )

                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                )

        gr.Examples(
            examples=examples,
            fn=lambda x: (Image.open("./example.jpg"), 42),
            inputs=[prompt],
            outputs=[result, seed],
            run_on_click=True,
        )

        gr.Markdown(
            "### Disclaimer\n\n"
            "License is non-commercial for both FLUX.1-dev and the Studio Ghibli dataset;"
            " but free to use for personal and non-commercial purposes."
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed],
    )

demo.queue()
demo.launch()