File size: 18,224 Bytes
28da097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from scipy.stats import boxcox
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV, StratifiedKFold
from sklearn.metrics import classification_report, accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

%matplotlib inline

# Set the resolution of the plotted figures
plt.rcParams['figure.dpi'] = 200

# Configure Seaborn plot styles: Set background color and use dark grid
sns.set(rc={'axes.facecolor': '#faded9'}, style='darkgrid')

df = pd.read_csv("/content/heart.csv")
df
df.info()

# Define the continuous features
continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']

# Identify the features to be converted to object data type
features_to_convert = [feature for feature in df.columns if feature not in continuous_features]

# Convert the identified features to object data type
df[features_to_convert] = df[features_to_convert].astype('object')

df.dtypes

# Get the summary statistics for numerical variables
df.describe().T

# Get the summary statistics for categorical variables
df.describe(include='object')

# Filter out continuous features for the univariate analysis
df_continuous = df[continuous_features]

# Set up the subplot
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(15, 10))

# Loop to plot histograms for each continuous feature
for i, col in enumerate(df_continuous.columns):
    x = i // 3
    y = i % 3
    values, bin_edges = np.histogram(df_continuous[col],
                                     range=(np.floor(df_continuous[col].min()), np.ceil(df_continuous[col].max())))

    graph = sns.histplot(data=df_continuous, x=col, bins=bin_edges, kde=True, ax=ax[x, y],
                         edgecolor='none', color='red', alpha=0.6, line_kws={'lw': 3})
    ax[x, y].set_xlabel(col, fontsize=15)
    ax[x, y].set_ylabel('Count', fontsize=12)
    ax[x, y].set_xticks(np.round(bin_edges, 1))
    ax[x, y].set_xticklabels(ax[x, y].get_xticks(), rotation=45)
    ax[x, y].grid(color='lightgrey')

    for j, p in enumerate(graph.patches):
        ax[x, y].annotate('{}'.format(p.get_height()), (p.get_x() + p.get_width() / 2, p.get_height() + 1),
                          ha='center', fontsize=10, fontweight="bold")

    textstr = '\n'.join((
        r'$\mu=%.2f$' % df_continuous[col].mean(),
        r'$\sigma=%.2f$' % df_continuous[col].std()
    ))
    ax[x, y].text(0.75, 0.9, textstr, transform=ax[x, y].transAxes, fontsize=12, verticalalignment='top',
                  color='white', bbox=dict(boxstyle='round', facecolor='#ff826e', edgecolor='white', pad=0.5))

ax[1,2].axis('off')
plt.suptitle('Distribution of Continuous Variables', fontsize=20)
plt.tight_layout()
plt.subplots_adjust(top=0.92)
plt.show()

# Filter out categorical features for the univariate analysis
categorical_features = df.columns.difference(continuous_features)
df_categorical = df[categorical_features]

# Set up the subplot for a 4x2 layout
fig, ax = plt.subplots(nrows=5, ncols=2, figsize=(15, 18))

# Loop to plot bar charts for each categorical feature in the 4x2 layout
for i, col in enumerate(categorical_features):
    row = i // 2
    col_idx = i % 2

    # Calculate frequency percentages
    value_counts = df[col].value_counts(normalize=True).mul(100).sort_values()

    # Plot bar chart
    value_counts.plot(kind='barh', ax=ax[row, col_idx], width=0.8, color='red')

    # Add frequency percentages to the bars
    for index, value in enumerate(value_counts):
        ax[row, col_idx].text(value, index, str(round(value, 1)) + '%', fontsize=15, weight='bold', va='center')

    ax[row, col_idx].set_xlim([0, 95])
    ax[row, col_idx].set_xlabel('Frequency Percentage', fontsize=12)
    ax[row, col_idx].set_title(f'{col}', fontsize=20)

ax[4,1].axis('off')
plt.suptitle('Distribution of Categorical Variables', fontsize=22)
plt.tight_layout()
plt.subplots_adjust(top=0.95)
plt.show()
# Set color palette
sns.set_palette(['#ff826e', 'red'])

# Create the subplots
fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]})

# Loop through each continuous feature to create barplots and kde plots
for i, col in enumerate(continuous_features):
    # Barplot showing the mean value of the feature for each target category
    graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0])

    # KDE plot showing the distribution of the feature for each target category
    sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0')
    sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1')
    ax[i,1].set_yticks([])
    ax[i,1].legend(title='Heart Disease', loc='upper right')

    # Add mean values to the barplot
    for cont in graph.containers:
        graph.bar_label(cont, fmt=' %.3g')

# Set the title for the entire figure
plt.suptitle('Continuous Features vs Target Distribution', fontsize=22)
plt.tight_layout()
plt.show()

# Set color palette
sns.set_palette(['#ff826e', 'red'])

# Create the subplots
fig, ax = plt.subplots(len(continuous_features), 2, figsize=(15,15), gridspec_kw={'width_ratios': [1, 2]})

# Loop through each continuous feature to create barplots and kde plots
for i, col in enumerate(continuous_features):
    # Barplot showing the mean value of the feature for each target category
    graph = sns.barplot(data=df, x="target", y=col, ax=ax[i,0])

    # KDE plot showing the distribution of the feature for each target category
    sns.kdeplot(data=df[df["target"]==0], x=col, fill=True, linewidth=2, ax=ax[i,1], label='0')
    sns.kdeplot(data=df[df["target"]==1], x=col, fill=True, linewidth=2, ax=ax[i,1], label='1')
    ax[i,1].set_yticks([])
    ax[i,1].legend(title='Heart Disease', loc='upper right')

    # Add mean values to the barplot
    for cont in graph.containers:
        graph.bar_label(cont, fmt=' %.3g')

# Set the title for the entire figure
plt.suptitle('Continuous Features vs Target Distribution', fontsize=22)
plt.tight_layout()
plt.show()

# Remove 'target' from the categorical_features
categorical_features = [feature for feature in categorical_features if feature != 'target']
fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(15,10))

for i,col in enumerate(categorical_features):

    # Create a cross tabulation showing the proportion of purchased and non-purchased loans for each category of the feature
    cross_tab = pd.crosstab(index=df[col], columns=df['target'])

    # Using the normalize=True argument gives us the index-wise proportion of the data
    cross_tab_prop = pd.crosstab(index=df[col], columns=df['target'], normalize='index')

    # Define colormap
    cmp = ListedColormap(['#ff826e', 'red'])

    # Plot stacked bar charts
    x, y = i//4, i%4
    cross_tab_prop.plot(kind='bar', ax=ax[x,y], stacked=True, width=0.8, colormap=cmp,
                        legend=False, ylabel='Proportion', sharey=True)

    # Add the proportions and counts of the individual bars to our plot
    for idx, val in enumerate([*cross_tab.index.values]):
        for (proportion, count, y_location) in zip(cross_tab_prop.loc[val],cross_tab.loc[val],cross_tab_prop.loc[val].cumsum()):
            ax[x,y].text(x=idx-0.3, y=(y_location-proportion)+(proportion/2)-0.03,
                         s = f'    {count}\n({np.round(proportion * 100, 1)}%)',
                         color = "black", fontsize=9, fontweight="bold")

    # Add legend
    ax[x,y].legend(title='target', loc=(0.7,0.9), fontsize=8, ncol=2)
    # Set y limit
    ax[x,y].set_ylim([0,1.12])
    # Rotate xticks
    ax[x,y].set_xticklabels(ax[x,y].get_xticklabels(), rotation=0)


plt.suptitle('Categorical Features vs Target Stacked Barplots', fontsize=22)
plt.tight_layout()
plt.show()

# Check for missing values in the dataset
df.isnull().sum().sum()
continuous_features

Q1 = df[continuous_features].quantile(0.25)
Q3 = df[continuous_features].quantile(0.75)
IQR = Q3 - Q1
outliers_count_specified = ((df[continuous_features] < (Q1 - 1.5 * IQR)) | (df[continuous_features] > (Q3 + 1.5 * IQR))).sum()

outliers_count_specified

# Implementing one-hot encoding on the specified categorical features
df_encoded = pd.get_dummies(df, columns=['cp', 'restecg', 'thal'], drop_first=True)

# Convert the rest of the categorical variables that don't need one-hot encoding to integer data type
features_to_convert = ['sex', 'fbs', 'exang', 'slope', 'ca', 'target']
for feature in features_to_convert:
    df_encoded[feature] = df_encoded[feature].astype(int)

df_encoded.dtypes
# Displaying the resulting DataFrame after one-hot encoding
df_encoded.head()
# Define the features (X) and the output labels (y)
X = df_encoded.drop('target', axis=1)
y = df_encoded['target']
# Splitting data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y)
continuous_features
# Adding a small constant to 'oldpeak' to make all values positive
X_train['oldpeak'] = X_train['oldpeak'] + 0.001
X_test['oldpeak'] = X_test['oldpeak'] + 0.001

# Checking the distribution of the continuous features
fig, ax = plt.subplots(2, 5, figsize=(15,10))

# Original Distributions
for i, col in enumerate(continuous_features):
    sns.histplot(X_train[col], kde=True, ax=ax[0,i], color='#ff826e').set_title(f'Original {col}')


# Applying Box-Cox Transformation
# Dictionary to store lambda values for each feature
lambdas = {}

for i, col in enumerate(continuous_features):
    # Only apply box-cox for positive values
    if X_train[col].min() > 0:
        X_train[col], lambdas[col] = boxcox(X_train[col])
        # Applying the same lambda to test data
        X_test[col] = boxcox(X_test[col], lmbda=lambdas[col])
        sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='red').set_title(f'Transformed {col}')
    else:
      sns.histplot(X_train[col], kde=True, ax=ax[1,i], color='green').set_title(f'{col} (Not Transformed)')

fig.tight_layout()
plt.show()

X_train.head()

# Define the base DT model
dt_base = DecisionTreeClassifier(random_state=0)

def tune_clf_hyperparameters(clf, param_grid, X_train, y_train, scoring='recall', n_splits=3):
    '''
    This function optimizes the hyperparameters for a classifier by searching over a specified hyperparameter grid.
    It uses GridSearchCV and cross-validation (StratifiedKFold) to evaluate different combinations of hyperparameters.
    The combination with the highest recall for class 1 is selected as the default scoring metric.
    The function returns the classifier with the optimal hyperparameters.
    '''

    # Create the cross-validation object using StratifiedKFold to ensure the class distribution is the same across all the folds
    cv = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=0)

    # Create the GridSearchCV object
    clf_grid = GridSearchCV(clf, param_grid, cv=cv, scoring=scoring, n_jobs=-1)

    # Fit the GridSearchCV object to the training data
    clf_grid.fit(X_train, y_train)

    # Get the best hyperparameters
    best_hyperparameters = clf_grid.best_params_

    # Return best_estimator_ attribute which gives us the best model that has been fitted to the training data
    return clf_grid.best_estimator_, best_hyperparameters

    # Hyperparameter grid for DT
param_grid_dt = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [2,3],
    'min_samples_split': [2, 3, 4],
    'min_samples_leaf': [1, 2]
}
# Call the function for hyperparameter tuning
best_dt, best_dt_hyperparams = tune_clf_hyperparameters(dt_base, param_grid_dt, X_train, y_train)

print('DT Optimal Hyperparameters: \n', best_dt_hyperparams)
# Evaluate the optimized model on the train data
print(classification_report(y_train, best_dt.predict(X_train)))
# Evaluate the optimized model on the test data
print(classification_report(y_test, best_dt.predict(X_test)))
def evaluate_model(model, X_test, y_test, model_name):
    """
    Evaluates the performance of a trained model on test data using various metrics.
    """
    # Make predictions
y_pred = model.predict(X_test)

    # Get classification report
report = classification_report(y_test, y_pred, output_dict=True)

    # Extracting metrics
metrics = {
        "precision_0": report["0"]["precision"],
        "precision_1": report["1"]["precision"],
        "recall_0": report["0"]["recall"],
        "recall_1": report["1"]["recall"],
        "f1_0": report["0"]["f1-score"],
        "f1_1": report["1"]["f1-score"],
        "macro_avg_precision": report["macro avg"]["precision"],
        "macro_avg_recall": report["macro avg"]["recall"],
        "macro_avg_f1": report["macro avg"]["f1-score"],
        "accuracy": accuracy_score(y_test, y_pred)
}

    # Convert dictionary to dataframe
df = pd.DataFrame(metrics, index=[model_name]).round(2)

return df
dt_evaluation = evaluate_model(best_dt, X_test, y_test, 'DT')
dt_evaluation
rf_base = RandomForestClassifier(random_state=0)
param_grid_rf = {
    'n_estimators': [10, 30, 50, 70, 100],
    'criterion': ['gini', 'entropy'],
    'max_depth': [2, 3, 4],
    'min_samples_split': [2, 3, 4, 5],
    'min_samples_leaf': [1, 2, 3],
    'bootstrap': [True, False]
}
# Using the tune_clf_hyperparameters function to get the best estimator
best_rf, best_rf_hyperparams = tune_clf_hyperparameters(rf_base, param_grid_rf, X_train, y_train)
print('RF Optimal Hyperparameters: \n', best_rf_hyperparams)

# Evaluate the optimized model on the train data
print(classification_report(y_train, best_rf.predict(X_train)))

# Evaluate the optimized model on the test data
print(classification_report(y_test, best_rf.predict(X_test)))

rf_evaluation = evaluate_model(best_rf, X_test, y_test, 'RF')
rf_evaluation

# Define the base KNN model and set up the pipeline with scaling
knn_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('knn', KNeighborsClassifier())
])
# Hyperparameter grid for KNN
knn_param_grid = {
    'knn__n_neighbors': list(range(1, 12)),
    'knn__weights': ['uniform', 'distance'],
    'knn__p': [1, 2]  # 1: Manhattan distance, 2: Euclidean distance
}
# Hyperparameter tuning for KNN
best_knn, best_knn_hyperparams = tune_clf_hyperparameters(knn_pipeline, knn_param_grid, X_train, y_train)
print('KNN Optimal Hyperparameters: \n', best_knn_hyperparams)
# Evaluate the optimized model on the train data
print(classification_report(y_train, best_knn.predict(X_train)))
# Evaluate the optimized model on the test data
print(classification_report(y_test, best_knn.predict(X_test)))
knn_evaluation = evaluate_model(best_knn, X_test, y_test, 'KNN')
knn_evaluation

svm_pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('svm', SVC(probability=True))
])

param_grid_svm = {
    'svm__C': [0.0011, 0.005, 0.01, 0.05, 0.1, 1, 10, 20],
    'svm__kernel': ['linear', 'rbf', 'poly'],
    'svm__gamma': ['scale', 'auto', 0.1, 0.5, 1, 5],
    'svm__degree': [2, 3, 4]
}
# Call the function for hyperparameter tuning
best_svm, best_svm_hyperparams = tune_clf_hyperparameters(svm_pipeline, param_grid_svm, X_train, y_train)
print('SVM Optimal Hyperparameters: \n', best_svm_hyperparams)
# Evaluate the optimized model on the train data
print(classification_report(y_train, best_svm.predict(X_train)))
svm_evaluation = evaluate_model(best_svm, X_test, y_test, 'SVM')
svm_evaluation
# Concatenate the dataframes
all_evaluations = [dt_evaluation, rf_evaluation, knn_evaluation, svm_evaluation]
results = pd.concat(all_evaluations)

# Sort by 'recall_1'
results = results.sort_values(by='recall_1', ascending=False).round(2)
results
# Sort values based on 'recall_1'
results.sort_values(by='recall_1', ascending=True, inplace=True)
recall_1_scores = results['recall_1']

# Plot the horizontal bar chart
fig, ax = plt.subplots(figsize=(12, 7), dpi=70)
ax.barh(results.index, recall_1_scores, color='red')

# Annotate the values and indexes
for i, (value, name) in enumerate(zip(recall_1_scores, results.index)):
    ax.text(value + 0.01, i, f"{value:.2f}", ha='left', va='center', fontweight='bold', color='red', fontsize=15)
    ax.text(0.1, i, name, ha='left', va='center', fontweight='bold', color='white', fontsize=25)

# Remove yticks
ax.set_yticks([])

# Set x-axis limit
ax.set_xlim([0, 1.2])

# Add title and xlabel
plt.title("Recall for Positive Class across Models", fontweight='bold', fontsize=22)
plt.xlabel('Recall Value', fontsize=16)
plt.show()

!pip install gradio
import gradio as gr
import numpy as np
from sklearn.ensemble import RandomForestClassifier

# Example: Define and train a Random Forest model
model = RandomForestClassifier()

# Dummy training data (replace with your actual data)
X_train = np.random.rand(100, 13)  # 100 samples, 12 features (one for each input)
y_train = np.random.randint(2, size=100)  # Binary target

# Train the model
model.fit(X_train, y_train)

# Define the prediction function
def predict(*inputs):
    try:
        # Convert inputs to a numpy array and reshape it to match the model's expected input shape
        input_array = np.array(inputs).reshape(1, -1)
        prediction = model.predict(input_array)  # Make a prediction
        return str(prediction[0])  # Return the prediction (single value) as a string for display
    except Exception as e:
        return str(e)  # Return any errors as a string (for debugging)

# Define the features (input fields) for Gradio
features = [
    'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
    'exang', 'oldpeak', 'slope', 'ca','thal'
]

# Create Gradio input components (use gr.Number for numeric inputs)
inputs = [gr.Number(label=feature, value=0) for feature in features]

# Output component (show the prediction result)
outputs = gr.Textbox(label="Prediction Output")

# Create and launch the Gradio interface
gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()