File size: 2,001 Bytes
e000cc1
 
 
fde7ff2
 
 
cd6ce77
e000cc1
cd6ce77
fde7ff2
 
 
e000cc1
 
eb34307
e000cc1
 
 
 
fde7ff2
 
aa4b6f4
fde7ff2
aa4b6f4
 
9269a20
fde7ff2
 
 
 
 
 
e000cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8912a
e000cc1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

import gradio as gr
from AinaTheme import theme
from faster_whisper import WhisperModel
import torch

device, torch_dtype = ("cuda", "float32") if torch.cuda.is_available() else ("cpu", "int8")

MODEL_NAME = "Systran/faster-whisper-large-v3"
print("Loading model ...")
model = WhisperModel(MODEL_NAME, compute_type=torch_dtype)
print("Loading model done.")

def transcribe(inputs):
    print("transcribe()")
    if inputs is None:
        raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
                       "o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")

    segments, _ = model.transcribe(
        inputs, 
        chunk_length=30,
        task="transcribe",
        word_timestamps=True,
        repetition_penalty=1.1,
        temperature=[0.0, 0.1, 0.2, 0,3, 0.4, 0.6, 0.8, 1.0],
    )

    text = ""
    for segment in segments:
        text += " " + segment.text.strip()
    return text


description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
              " comprovar els models de reconeixement de parla per a m贸bils. Per ara utilitza el checkpoint "\
              f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 馃 Transformers per a la transcripci贸."


def clear():
     return (None)


with gr.Blocks(theme=theme) as demo:
    gr.Markdown(description_string)
    with gr.Row():
        with gr.Column(scale=1):
            input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")

        with gr.Column(scale=1):
            output = gr.Textbox(label="Output", lines=8)
    
    with gr.Row(variant="panel"):
            clear_btn = gr.Button("Clear")
            submit_btn = gr.Button("Submit", variant="primary")


    submit_btn.click(fn=transcribe, inputs=[input], outputs=[output])
    clear_btn.click(fn=clear,inputs=[], outputs=[input], queue=False,)


if __name__ == "__main__":
    demo.launch()