Spaces:
Running
Running
import gradio as gr | |
from AinaTheme import theme | |
from faster_whisper import WhisperModel | |
import torch | |
device, torch_dtype = ("cuda", "float32") if torch.cuda.is_available() else ("cpu", "int8") | |
MODEL_NAME = "Systran/faster-whisper-large-v3" | |
print("Loading model ...") | |
model = WhisperModel(MODEL_NAME, compute_type=torch_dtype) | |
print("Loading model done.") | |
def transcribe(inputs): | |
print("transcribe()") | |
if inputs is None: | |
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\ | |
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud") | |
segments, _ = model.transcribe( | |
inputs, | |
chunk_length=30, | |
task="transcribe", | |
word_timestamps=True, | |
repetition_penalty=1.1, | |
temperature=[0.0, 0.1, 0.2, 0,3, 0.4, 0.6, 0.8, 1.0], | |
) | |
text = "" | |
for segment in segments: | |
text += " " + segment.text.strip() | |
return text | |
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\ | |
" comprovar els models de reconeixement de parla per a m贸bils. Per ara utilitza el checkpoint "\ | |
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 馃 Transformers per a la transcripci贸." | |
def clear(): | |
return (None) | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(description_string) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio") | |
with gr.Column(scale=1): | |
output = gr.Textbox(label="Output", lines=8) | |
with gr.Row(variant="panel"): | |
clear_btn = gr.Button("Clear") | |
submit_btn = gr.Button("Submit", variant="primary") | |
submit_btn.click(fn=transcribe, inputs=[input], outputs=[output]) | |
clear_btn.click(fn=clear,inputs=[], outputs=[input], queue=False,) | |
if __name__ == "__main__": | |
demo.launch() | |