anonymous8/RPD-Demo
initial commit
4943752
"""
Attack Class
============
"""
from collections import OrderedDict
from typing import List, Union
import lru
import torch
import textattack
from textattack.attack_results import (
FailedAttackResult,
MaximizedAttackResult,
SkippedAttackResult,
SuccessfulAttackResult,
)
from textattack.constraints import Constraint, PreTransformationConstraint
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.goal_functions import GoalFunction
from textattack.models.wrappers import ModelWrapper
from textattack.search_methods import SearchMethod
from textattack.shared import AttackedText, utils
from textattack.transformations import CompositeTransformation, Transformation
class Attack:
"""An attack generates adversarial examples on text.
An attack is comprised of a goal function, constraints, transformation, and a search method. Use :meth:`attack` method to attack one sample at a time.
Args:
goal_function (:class:`~textattack.goal_functions.GoalFunction`):
A function for determining how well a perturbation is doing at achieving the attack's goal.
constraints (list of :class:`~textattack.constraints.Constraint` or :class:`~textattack.constraints.PreTransformationConstraint`):
A list of constraints to add to the attack, defining which perturbations are valid.
transformation (:class:`~textattack.transformations.Transformation`):
The transformation applied at each step of the attack.
search_method (:class:`~textattack.search_methods.SearchMethod`):
The method for exploring the search space of possible perturbations
transformation_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**15`):
The number of items to keep in the transformations cache
constraint_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**15`):
The number of items to keep in the constraints cache
Example::
>>> import textattack
>>> import transformers
>>> # Load model, tokenizer, and model_wrapper
>>> model = transformers.AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("textattack/bert-base-uncased-imdb")
>>> model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
>>> # Construct our four components for `Attack`
>>> from textattack.constraints.pre_transformation import RepeatModification, StopwordModification
>>> from textattack.constraints.semantics import WordEmbeddingDistance
>>> goal_function = textattack.goal_functions.UntargetedClassification(model_wrapper)
>>> constraints = [
... RepeatModification(),
... StopwordModification()
... WordEmbeddingDistance(min_cos_sim=0.9)
... ]
>>> transformation = WordSwapEmbedding(max_candidates=50)
>>> search_method = GreedyWordSwapWIR(wir_method="delete")
>>> # Construct the actual attack
>>> attack = Attack(goal_function, constraints, transformation, search_method)
>>> input_text = "I really enjoyed the new movie that came out last month."
>>> label = 1 #Positive
>>> attack_result = attack.attack(input_text, label)
"""
def __init__(
self,
goal_function: GoalFunction,
constraints: List[Union[Constraint, PreTransformationConstraint]],
transformation: Transformation,
search_method: SearchMethod,
transformation_cache_size=2**15,
constraint_cache_size=2**15,
):
"""Initialize an attack object.
Attacks can be run multiple times.
"""
assert isinstance(
goal_function, GoalFunction
), f"`goal_function` must be of type `textattack.goal_functions.GoalFunction`, but got type `{type(goal_function)}`."
assert isinstance(
constraints, list
), "`constraints` must be a list of `textattack.constraints.Constraint` or `textattack.constraints.PreTransformationConstraint`."
for c in constraints:
assert isinstance(
c, (Constraint, PreTransformationConstraint)
), "`constraints` must be a list of `textattack.constraints.Constraint` or `textattack.constraints.PreTransformationConstraint`."
assert isinstance(
transformation, Transformation
), f"`transformation` must be of type `textattack.transformations.Transformation`, but got type `{type(transformation)}`."
assert isinstance(
search_method, SearchMethod
), f"`search_method` must be of type `textattack.search_methods.SearchMethod`, but got type `{type(search_method)}`."
self.goal_function = goal_function
self.search_method = search_method
self.transformation = transformation
self.is_black_box = (
getattr(transformation, "is_black_box", True) and search_method.is_black_box
)
if not self.search_method.check_transformation_compatibility(
self.transformation
):
raise ValueError(
f"SearchMethod {self.search_method} incompatible with transformation {self.transformation}"
)
self.constraints = []
self.pre_transformation_constraints = []
for constraint in constraints:
if isinstance(
constraint,
textattack.constraints.PreTransformationConstraint,
):
self.pre_transformation_constraints.append(constraint)
else:
self.constraints.append(constraint)
# Check if we can use transformation cache for our transformation.
if not self.transformation.deterministic:
self.use_transformation_cache = False
elif isinstance(self.transformation, CompositeTransformation):
self.use_transformation_cache = True
for t in self.transformation.transformations:
if not t.deterministic:
self.use_transformation_cache = False
break
else:
self.use_transformation_cache = True
self.transformation_cache_size = transformation_cache_size
self.transformation_cache = lru.LRU(transformation_cache_size)
self.constraint_cache_size = constraint_cache_size
self.constraints_cache = lru.LRU(constraint_cache_size)
# Give search method access to functions for getting transformations and evaluating them
self.search_method.get_transformations = self.get_transformations
# Give search method access to self.goal_function for model query count, etc.
self.search_method.goal_function = self.goal_function
# The search method only needs access to the first argument. The second is only used
# by the attack class when checking whether to skip the sample
self.search_method.get_goal_results = self.goal_function.get_results
# Give search method access to get indices which need to be ordered / searched
self.search_method.get_indices_to_order = self.get_indices_to_order
self.search_method.filter_transformations = self.filter_transformations
def clear_cache(self, recursive=True):
self.constraints_cache.clear()
if self.use_transformation_cache:
self.transformation_cache.clear()
if recursive:
self.goal_function.clear_cache()
for constraint in self.constraints:
if hasattr(constraint, "clear_cache"):
constraint.clear_cache()
def cpu_(self):
"""Move any `torch.nn.Module` models that are part of Attack to CPU."""
visited = set()
def to_cpu(obj):
visited.add(id(obj))
if isinstance(obj, torch.nn.Module):
obj.cpu()
elif isinstance(
obj,
(
Attack,
GoalFunction,
Transformation,
SearchMethod,
Constraint,
PreTransformationConstraint,
ModelWrapper,
),
):
for key in obj.__dict__:
s_obj = obj.__dict__[key]
if id(s_obj) not in visited:
to_cpu(s_obj)
elif isinstance(obj, (list, tuple)):
for item in obj:
if id(item) not in visited and isinstance(
item, (Transformation, Constraint, PreTransformationConstraint)
):
to_cpu(item)
to_cpu(self)
def cuda_(self):
"""Move any `torch.nn.Module` models that are part of Attack to GPU."""
visited = set()
def to_cuda(obj):
visited.add(id(obj))
if isinstance(obj, torch.nn.Module):
obj.to(textattack.shared.utils.device)
elif isinstance(
obj,
(
Attack,
GoalFunction,
Transformation,
SearchMethod,
Constraint,
PreTransformationConstraint,
ModelWrapper,
),
):
for key in obj.__dict__:
s_obj = obj.__dict__[key]
if id(s_obj) not in visited:
to_cuda(s_obj)
elif isinstance(obj, (list, tuple)):
for item in obj:
if id(item) not in visited and isinstance(
item, (Transformation, Constraint, PreTransformationConstraint)
):
to_cuda(item)
to_cuda(self)
def get_indices_to_order(self, current_text, **kwargs):
"""Applies ``pre_transformation_constraints`` to ``text`` to get all
the indices that can be used to search and order.
Args:
current_text: The current ``AttackedText`` for which we need to find indices are eligible to be ordered.
Returns:
The length and the filtered list of indices which search methods can use to search/order.
"""
indices_to_order = self.transformation(
current_text,
pre_transformation_constraints=self.pre_transformation_constraints,
return_indices=True,
**kwargs,
)
len_text = len(indices_to_order)
# Convert indices_to_order to list for easier shuffling later
return len_text, list(indices_to_order)
def _get_transformations_uncached(self, current_text, original_text=None, **kwargs):
"""Applies ``self.transformation`` to ``text``, then filters the list
of possible transformations through the applicable constraints.
Args:
current_text: The current ``AttackedText`` on which to perform the transformations.
original_text: The original ``AttackedText`` from which the attack started.
Returns:
A filtered list of transformations where each transformation matches the constraints
"""
transformed_texts = self.transformation(
current_text,
pre_transformation_constraints=self.pre_transformation_constraints,
**kwargs,
)
return transformed_texts
def get_transformations(self, current_text, original_text=None, **kwargs):
"""Applies ``self.transformation`` to ``text``, then filters the list
of possible transformations through the applicable constraints.
Args:
current_text: The current ``AttackedText`` on which to perform the transformations.
original_text: The original ``AttackedText`` from which the attack started.
Returns:
A filtered list of transformations where each transformation matches the constraints
"""
if not self.transformation:
raise RuntimeError(
"Cannot call `get_transformations` without a transformation."
)
if self.use_transformation_cache:
cache_key = tuple([current_text] + sorted(kwargs.items()))
if utils.hashable(cache_key) and cache_key in self.transformation_cache:
# promote transformed_text to the top of the LRU cache
self.transformation_cache[cache_key] = self.transformation_cache[
cache_key
]
transformed_texts = list(self.transformation_cache[cache_key])
else:
transformed_texts = self._get_transformations_uncached(
current_text, original_text, **kwargs
)
if utils.hashable(cache_key):
self.transformation_cache[cache_key] = tuple(transformed_texts)
else:
transformed_texts = self._get_transformations_uncached(
current_text, original_text, **kwargs
)
return self.filter_transformations(
transformed_texts, current_text, original_text
)
def _filter_transformations_uncached(
self, transformed_texts, current_text, original_text=None
):
"""Filters a list of potential transformed texts based on
``self.constraints``
Args:
transformed_texts: A list of candidate transformed ``AttackedText`` to filter.
current_text: The current ``AttackedText`` on which the transformation was applied.
original_text: The original ``AttackedText`` from which the attack started.
"""
filtered_texts = transformed_texts[:]
for C in self.constraints:
if len(filtered_texts) == 0:
break
if C.compare_against_original:
if not original_text:
raise ValueError(
f"Missing `original_text` argument when constraint {type(C)} is set to compare against `original_text`"
)
filtered_texts = C.call_many(filtered_texts, original_text)
else:
filtered_texts = C.call_many(filtered_texts, current_text)
# Default to false for all original transformations.
for original_transformed_text in transformed_texts:
self.constraints_cache[(current_text, original_transformed_text)] = False
# Set unfiltered transformations to True in the cache.
for filtered_text in filtered_texts:
self.constraints_cache[(current_text, filtered_text)] = True
return filtered_texts
def filter_transformations(
self, transformed_texts, current_text, original_text=None
):
"""Filters a list of potential transformed texts based on
``self.constraints`` Utilizes an LRU cache to attempt to avoid
recomputing common transformations.
Args:
transformed_texts: A list of candidate transformed ``AttackedText`` to filter.
current_text: The current ``AttackedText`` on which the transformation was applied.
original_text: The original ``AttackedText`` from which the attack started.
"""
# Remove any occurences of current_text in transformed_texts
transformed_texts = [
t for t in transformed_texts if t.text != current_text.text
]
# Populate cache with transformed_texts
uncached_texts = []
filtered_texts = []
for transformed_text in transformed_texts:
if (current_text, transformed_text) not in self.constraints_cache:
uncached_texts.append(transformed_text)
else:
# promote transformed_text to the top of the LRU cache
self.constraints_cache[
(current_text, transformed_text)
] = self.constraints_cache[(current_text, transformed_text)]
if self.constraints_cache[(current_text, transformed_text)]:
filtered_texts.append(transformed_text)
filtered_texts += self._filter_transformations_uncached(
uncached_texts, current_text, original_text=original_text
)
# Sort transformations to ensure order is preserved between runs
filtered_texts.sort(key=lambda t: t.text)
return filtered_texts
def _attack(self, initial_result):
"""Calls the ``SearchMethod`` to perturb the ``AttackedText`` stored in
``initial_result``.
Args:
initial_result: The initial ``GoalFunctionResult`` from which to perturb.
Returns:
A ``SuccessfulAttackResult``, ``FailedAttackResult``,
or ``MaximizedAttackResult``.
"""
final_result = self.search_method(initial_result)
self.clear_cache()
if final_result.goal_status == GoalFunctionResultStatus.SUCCEEDED:
result = SuccessfulAttackResult(
initial_result,
final_result,
)
elif final_result.goal_status == GoalFunctionResultStatus.SEARCHING:
result = FailedAttackResult(
initial_result,
final_result,
)
elif final_result.goal_status == GoalFunctionResultStatus.MAXIMIZING:
result = MaximizedAttackResult(
initial_result,
final_result,
)
else:
raise ValueError(f"Unrecognized goal status {final_result.goal_status}")
return result
def attack(self, example, ground_truth_output):
"""Attack a single example.
Args:
example (:obj:`str`, :obj:`OrderedDict[str, str]` or :class:`~textattack.shared.AttackedText`):
Example to attack. It can be a single string or an `OrderedDict` where
keys represent the input fields (e.g. "premise", "hypothesis") and the values are the actual input textx.
Also accepts :class:`~textattack.shared.AttackedText` that wraps around the input.
ground_truth_output(:obj:`int`, :obj:`float` or :obj:`str`):
Ground truth output of `example`.
For classification tasks, it should be an integer representing the ground truth label.
For regression tasks (e.g. STS), it should be the target value.
For seq2seq tasks (e.g. translation), it should be the target string.
Returns:
:class:`~textattack.attack_results.AttackResult` that represents the result of the attack.
"""
assert isinstance(
example, (str, OrderedDict, AttackedText)
), "`example` must either be `str`, `collections.OrderedDict`, `textattack.shared.AttackedText`."
if isinstance(example, (str, OrderedDict)):
example = AttackedText(example)
assert isinstance(
ground_truth_output, (int, str)
), "`ground_truth_output` must either be `str` or `int`."
goal_function_result, _ = self.goal_function.init_attack_example(
example, ground_truth_output
)
if goal_function_result.goal_status == GoalFunctionResultStatus.SKIPPED:
return SkippedAttackResult(goal_function_result)
else:
result = self._attack(goal_function_result)
return result
def __repr__(self):
"""Prints attack parameters in a human-readable string.
Inspired by the readability of printing PyTorch nn.Modules:
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/module.py
"""
main_str = "Attack" + "("
lines = []
lines.append(utils.add_indent(f"(search_method): {self.search_method}", 2))
# self.goal_function
lines.append(utils.add_indent(f"(goal_function): {self.goal_function}", 2))
# self.transformation
lines.append(utils.add_indent(f"(transformation): {self.transformation}", 2))
# self.constraints
constraints_lines = []
constraints = self.constraints + self.pre_transformation_constraints
if len(constraints):
for i, constraint in enumerate(constraints):
constraints_lines.append(utils.add_indent(f"({i}): {constraint}", 2))
constraints_str = utils.add_indent("\n" + "\n".join(constraints_lines), 2)
else:
constraints_str = "None"
lines.append(utils.add_indent(f"(constraints): {constraints_str}", 2))
# self.is_black_box
lines.append(utils.add_indent(f"(is_black_box): {self.is_black_box}", 2))
main_str += "\n " + "\n ".join(lines) + "\n"
main_str += ")"
return main_str
def __getstate__(self):
state = self.__dict__.copy()
state["transformation_cache"] = None
state["constraints_cache"] = None
return state
def __setstate__(self, state):
self.__dict__ = state
self.transformation_cache = lru.LRU(self.transformation_cache_size)
self.constraints_cache = lru.LRU(self.constraint_cache_size)
__str__ = __repr__