ar08's picture
Upload 1040 files
246d201 verified
###########################################################################################################
# Adapted from https://github.com/TheAgentCompany/TheAgentCompany/blob/main/evaluation/summarise_results.py
###########################################################################################################
import glob
import json
import os
import re
import sys
from typing import Dict, Tuple
def calculate_cost(model: str, prompt_tokens: int, completion_tokens: int) -> float:
"""
Calculate the cost of the model call.
"""
if 'claude-3-5-sonnet' in model.lower():
# https://www.anthropic.com/pricing#anthropic-api, accessed 12/11/2024
return 0.000003 * prompt_tokens + 0.000015 * completion_tokens
elif 'gpt-4o' in model.lower():
# https://openai.com/api/pricing/, accessed 12/11/2024
return 0.0000025 * prompt_tokens + 0.00001 * completion_tokens
elif 'gemini-1.5-pro' in model.lower():
# https://ai.google.dev/pricing#1_5pro, accessed 12/11/2024
# assuming prompts up to 128k tokens
cost = 0.00000125 * prompt_tokens + 0.000005 * completion_tokens
if prompt_tokens > 128000:
cost *= 2
return cost
elif 'gemini-2.0-flash-exp' in model.lower():
# price unknown for gemini-2.0-flash-exp, assuming same price as gemini-1.5-flash
cost = 0.000000075 * prompt_tokens + 0.0000003 * completion_tokens
if prompt_tokens > 128000:
cost *= 2
return cost
elif 'qwen2-72b' in model.lower():
# assuming hosted on Together
# https://www.together.ai/pricing, accessed 12/11/2024
return 0.0000009 * (prompt_tokens + completion_tokens)
elif 'qwen2p5-72b' in model.lower():
# assuming hosted on Together
# https://www.together.ai/pricing, accessed 12/14/2024
return 0.0000012 * (prompt_tokens + completion_tokens)
elif 'llama-v3p1-405b-instruct' in model.lower():
# assuming hosted on Fireworks AI
# https://fireworks.ai/pricing, accessed 12/11/2024
return 0.000003 * (prompt_tokens + completion_tokens)
elif 'llama-v3p1-70b-instruct' in model.lower():
# assuming hosted on Fireworks AI
return 0.0000009 * (prompt_tokens + completion_tokens)
elif 'llama-v3p3-70b-instruct' in model.lower():
# assuming hosted on Fireworks AI
return 0.0000009 * (prompt_tokens + completion_tokens)
elif 'amazon.nova-pro-v1:0' in model.lower():
# assuming hosted on Amazon Bedrock
# https://aws.amazon.com/bedrock/pricing/, accessed 12/11/2024
return 0.0000008 * prompt_tokens + 0.0000032 * completion_tokens
else:
raise ValueError(f'Unknown model: {model}')
def analyze_eval_json_file(filepath: str) -> Tuple[int, int]:
"""
Analyze a single eval JSON file and extract the total and result from final_score.
Args:
filepath: Path to the JSON file
Returns:
Tuple containing (total, result) from final_score
"""
try:
with open(filepath, 'r') as f:
data = json.load(f)
final_score = data.get('final_score', {})
return (final_score.get('total', 0), final_score.get('result', 0))
except json.JSONDecodeError as e:
print(f'Error decoding JSON in {filepath}: {e}')
return (0, 0)
except Exception as e:
print(f'Error processing {filepath}: {e}')
return (0, 0)
def analyze_traj_json_file(filepath: str) -> Tuple[int, float]:
"""
Analyze a single trajectory JSON file and extract the steps and tokens
for each step. Then estimate the cost based on the tokens and the model type.
Note: this is assuming there's no prompt caching at all.
"""
steps: int = 0
cost: float = 0.0
with open(filepath, 'r') as f:
data = json.load(f)
response_id = None
for action in data:
if 'tool_call_metadata' in action:
if action['tool_call_metadata']['model_response']['id'] != response_id:
response_id = action['tool_call_metadata']['model_response']['id']
else:
# openhands displays the same model response meta data multiple times, when
# a single LLM call leads to multiple actions and observations.
continue
steps += 1
usage = action['tool_call_metadata']['model_response']['usage']
model: str = action['tool_call_metadata']['model_response']['model']
prompt_tokens = usage['prompt_tokens']
completion_tokens = usage['completion_tokens']
cost += calculate_cost(model, prompt_tokens, completion_tokens)
return (steps, cost)
def analyze_folder(
folder_path: str,
) -> Tuple[Dict[str, Tuple[int, int]], Dict[str, Tuple[int, float]]]:
"""
Analyze all eval_*.json & traj_*.json files in the specified folder.
Args:
folder_path: Path to the folder containing JSON files
Returns:
dictionaries:
- eval_results: Dictionary with filename as key and (total, result) tuple as value
- traj_results: Dictionary with filename as key and (steps, cost) tuple as value
"""
eval_results = {}
traj_results = {}
eval_pattern = os.path.join(folder_path, 'eval_*.json')
traj_pattern = os.path.join(folder_path, 'traj_*.json')
for filepath in glob.glob(eval_pattern):
filename = os.path.basename(filepath)
total, result = analyze_eval_json_file(filepath)
key = re.search(r'eval_(.+)\.json', filename).group(1)
eval_results[key] = (total, result)
for filepath in glob.glob(traj_pattern):
filename = os.path.basename(filepath)
steps, cost = analyze_traj_json_file(filepath)
key = re.search(r'traj_(.+)\.json', filename).group(1)
traj_results[key] = (steps, cost)
return eval_results, traj_results
def get_task_nature_category(task_name: str) -> str:
"""
Get the nature category of the task.
"""
task_nature = task_name.split('-')[0]
if task_nature.lower() in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance']:
return task_nature
else:
return 'other'
def calculate_score(total: int, result: int) -> float:
"""
Calculate the score as a number between 0 and 1.
Formula: score = (result / total) * 0.5 + (result // total) * 0.5
Explanation:
- (result / total) * 0.5: This is the completion ratio, scaled down to a 0-0.5 range.
- (result // total) * 0.5: This is a binary score indicating whether the task was completed or not.
Args:
total: Total possible points
result: Actual points achieved
Returns:
Score as a number between 0 and 1
"""
return (result / total * 0.5) + (result // total * 0.5)
def is_perfect_completion(total: int, result: int) -> bool:
"""
Check if the task achieved perfect completion.
Args:
total: Total possible points
result: Actual points achieved
Returns:
True if result equals total, False otherwise
"""
return total > 0 and total == result
def main():
if len(sys.argv) != 2:
print('Usage: poetry run python summarise_results.py <folder_path>')
sys.exit(1)
folder_path = sys.argv[1]
if not os.path.isdir(folder_path):
print(f"Error: '{folder_path}' is not a valid directory")
sys.exit(1)
eval_results, traj_results = analyze_folder(folder_path)
if not eval_results:
print(f'No eval_*.json files found in {folder_path}')
return
# Create list of results with completion ratios for sorting
detailed_results = [
(
task_name,
total,
result,
calculate_score(total, result),
is_perfect_completion(total, result),
get_task_nature_category(task_name),
)
for task_name, (total, result) in eval_results.items()
]
# Sort by score in descending order
detailed_results.sort(key=lambda x: (-x[3], x[0]))
# Calculate perfect completion stats
perfect_completions = sum(
1 for _, _, _, _, is_perfect, _ in detailed_results if is_perfect
)
# Print header
print('\n# Evaluation Results Report')
print('\n## Results per File')
print('\n*Sorted by score (⭐ indicates perfect completion)*\n')
# Print table header
print(
'| Filename | Total | Result | Score | Steps | Cost (assuming no prompt caching)|'
)
print('|----------|--------|---------|-------|-------|------|')
# Print individual file results
for task_name, total, result, score, is_perfect, task_nature in detailed_results:
perfect_marker = ' ⭐' if is_perfect else ''
print(
f'| {task_name} | {total:,} | {result:,} | {score:.2f}{perfect_marker} | {traj_results[task_name][0]} | {traj_results[task_name][1]:.2f} |'
)
# Print summary section
print('\n## Summary\n')
print(f'**Tasks Evaluated:** {len(eval_results)}\n')
print(
f'**Perfect Completions:** {perfect_completions}/{len(eval_results)} ({(perfect_completions/len(eval_results)*100):.2f}%)\n'
)
overall_score = (
sum(score for _, _, _, score, _, _ in detailed_results)
/ len(detailed_results)
* 100
)
avg_steps = sum(steps for steps, _ in traj_results.values()) / len(traj_results)
avg_cost = sum(cost for _, cost in traj_results.values()) / len(traj_results)
print(f'**Overall Score:** {overall_score:.2f}%\n')
print(f'**Average Steps:** {avg_steps:.2f}\n')
print(f'**Average Cost (USD):** {avg_cost:.2f}\n')
# Additional statistics
if detailed_results:
highest_score = max(score for _, _, _, score, _, _ in detailed_results)
lowest_score = min(score for _, _, _, score, _, _ in detailed_results)
median_score = detailed_results[len(detailed_results) // 2][3]
avg_score = sum(score for _, _, _, score, _, _ in detailed_results) / len(
detailed_results
)
print('\n## Statistics\n')
print('| Metric | Value |')
print('|---------|--------|')
print(f'| Highest Task Score | {highest_score*100:.2f}% |')
print(f'| Lowest Task Score | {lowest_score*100:.2f}% |')
print(f'| Median Task Score | {median_score*100:.2f}% |')
print(f'| Average Task Score | {avg_score*100:.2f}% |')
# compute avg score per nature category
print('\n## Statistics per Nature Category\n')
print('| Metric | Value |')
print('|---------|--------|')
for task_nature in ['sde', 'pm', 'ds', 'admin', 'hr', 'finance', 'other']:
num_of_tasks = sum(
1
for _, _, _, _, _, nature_category in detailed_results
if nature_category == task_nature
)
task_nature_score = (
sum(
score
for _, _, _, score, _, nature_category in detailed_results
if nature_category == task_nature
)
/ num_of_tasks
)
perfect_completions = sum(
1
for _, _, _, _, is_perfect, nature_category in detailed_results
if nature_category == task_nature and is_perfect
)
print(
f'| Perfect Completions for {task_nature} | {perfect_completions}/{num_of_tasks} ({perfect_completions/num_of_tasks*100:.2f}%) |'
)
print(f'| Average Score for {task_nature} | {task_nature_score*100:.2f}% |')
if __name__ == '__main__':
main()