|
import asyncio
|
|
import importlib.util
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
from evaluation.integration_tests.tests.base import BaseIntegrationTest, TestResult
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
update_llm_config_for_completions_logging,
|
|
)
|
|
from evaluation.utils.shared import (
|
|
codeact_user_response as fake_user_response,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AgentConfig,
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
from openhands.events.serialization.event import event_to_dict
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
FAKE_RESPONSES = {
|
|
'CodeActAgent': fake_user_response,
|
|
'DelegatorAgent': fake_user_response,
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
instance_id: str,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime=os.environ.get('RUNTIME', 'docker'),
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
timeout=300,
|
|
|
|
platform='linux/amd64',
|
|
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
keep_runtime_alive=False,
|
|
remote_runtime_init_timeout=3600,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
|
|
debug=True,
|
|
)
|
|
config.set_llm_config(
|
|
update_llm_config_for_completions_logging(
|
|
metadata.llm_config, metadata.eval_output_dir, instance_id
|
|
)
|
|
)
|
|
agent_config = AgentConfig(
|
|
codeact_enable_jupyter=True,
|
|
codeact_enable_browsing=True,
|
|
codeact_enable_llm_editor=False,
|
|
)
|
|
config.set_agent_config(agent_config)
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata, instance.instance_id)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
|
|
else:
|
|
logger.info(
|
|
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
|
|
)
|
|
|
|
|
|
|
|
|
|
instance_id = instance.instance_id
|
|
spec = importlib.util.spec_from_file_location(instance_id, instance.file_path)
|
|
test_module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(test_module)
|
|
assert hasattr(
|
|
test_module, 'Test'
|
|
), f'Test module {instance_id} does not have a Test class'
|
|
|
|
test_class: type[BaseIntegrationTest] = test_module.Test
|
|
assert issubclass(
|
|
test_class, BaseIntegrationTest
|
|
), f'Test class {instance_id} does not inherit from BaseIntegrationTest'
|
|
|
|
instruction = test_class.INSTRUCTION
|
|
|
|
|
|
|
|
|
|
runtime: Runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
try:
|
|
test_class.initialize_runtime(runtime)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
|
|
)
|
|
)
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
|
|
|
|
|
|
|
|
histories = state.history
|
|
|
|
|
|
logger.info(f'Total events in history: {len(histories)}')
|
|
assert len(histories) > 0, 'History should not be empty'
|
|
|
|
test_result: TestResult = test_class.verify_result(runtime, histories)
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
finally:
|
|
runtime.close()
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=str(instance.instance_id),
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=[event_to_dict(event) for event in histories],
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result.model_dump(),
|
|
)
|
|
return output
|
|
|
|
|
|
def load_integration_tests() -> pd.DataFrame:
|
|
"""Load tests from python files under ./tests"""
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
test_dir = os.path.join(cur_dir, 'tests')
|
|
test_files = [
|
|
os.path.join(test_dir, f)
|
|
for f in os.listdir(test_dir)
|
|
if f.startswith('t') and f.endswith('.py')
|
|
]
|
|
df = pd.DataFrame(test_files, columns=['file_path'])
|
|
df['instance_id'] = df['file_path'].apply(
|
|
lambda x: os.path.basename(x).rstrip('.py')
|
|
)
|
|
return df
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
integration_tests = load_integration_tests()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'integration_tests',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
|
|
eval_ids = None
|
|
if args.eval_ids:
|
|
eval_ids = str(args.eval_ids).split(',')
|
|
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
|
|
|
|
instances = prepare_dataset(
|
|
integration_tests,
|
|
output_file,
|
|
args.eval_n_limit,
|
|
eval_ids=eval_ids,
|
|
)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|
|
df = pd.read_json(output_file, lines=True, orient='records')
|
|
|
|
|
|
df['success'] = df['test_result'].apply(lambda x: x['success'])
|
|
df['reason'] = df['test_result'].apply(lambda x: x['reason'])
|
|
logger.info('-' * 100)
|
|
logger.info(
|
|
f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})'
|
|
)
|
|
logger.info(
|
|
'\nEvaluation Results:'
|
|
+ '\n'
|
|
+ df[['instance_id', 'success', 'reason']].to_string(index=False)
|
|
)
|
|
logger.info('-' * 100)
|
|
|
|
|
|
|
|
df['cost'] = df['metrics'].apply(
|
|
lambda m: round(sum(c['cost'] for c in m['costs']), 3)
|
|
if m and 'costs' in m
|
|
else 0.0
|
|
)
|
|
|
|
|
|
df['error_message'] = df.get('error', None)
|
|
|
|
logger.info(f'Total cost: USD {df["cost"].sum():.2f}')
|
|
|
|
report_file = os.path.join(metadata.eval_output_dir, 'report.md')
|
|
with open(report_file, 'w') as f:
|
|
f.write(
|
|
f'Success rate: {df["success"].mean():.2%}'
|
|
f' ({df["success"].sum()}/{len(df)})\n'
|
|
)
|
|
f.write(f'\nTotal cost: USD {df["cost"].sum():.2f}\n')
|
|
f.write(
|
|
df[
|
|
['instance_id', 'success', 'reason', 'cost', 'error_message']
|
|
].to_markdown(index=False)
|
|
)
|
|
|