This PR allows to automatically change the seed

#1
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -3,9 +3,12 @@ import os
3
  from glob import glob
4
  from diffusers.utils import load_image
5
  import spaces
 
6
  from panna.pipeline import PipelineSVDUpscale
7
 
8
 
 
 
9
  model = PipelineSVDUpscale(upscaler="instruct_ir")
10
  example_files = []
11
  root_url = "https://huggingface.co/spaces/multimodalart/stable-video-diffusion/resolve/main/images"
@@ -19,7 +22,10 @@ title = ("# [Stable Video Diffusion](ttps://huggingface.co/stabilityai/stable-vi
19
 
20
 
21
  @spaces.GPU(duration=120)
22
- def infer(init_image, upscaler_prompt, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed):
 
 
 
23
  base_count = len(glob(os.path.join(tmp_output_dir, "*.mp4")))
24
  video_path = os.path.join(tmp_output_dir, f"{base_count:06d}.mp4")
25
  model(
@@ -41,19 +47,20 @@ with gr.Blocks() as demo:
41
  with gr.Row():
42
  with gr.Column():
43
  image = gr.Image(label="Upload your image", type="pil")
44
- run_button = gr.Button("Generate")
45
- video = gr.Video()
46
  with gr.Accordion("Advanced options", open=False):
47
  upscaler_prompt = gr.Text("Correct the motion blur in this image so it is more clear", label="Prompt for upscaler", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
48
- seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
49
  num_frames = gr.Slider(label="Number of frames", minimum=1, maximum=100, step=1, value=25)
50
  motion_bucket_id = gr.Slider(label="Motion bucket id", minimum=1, maximum=255, step=1, value=127)
51
  noise_aug_strength = gr.Slider(label="Noise strength", minimum=0, maximum=1, step=0.01, value=0.02)
52
  fps = gr.Slider(label="Frames per second", minimum=5, maximum=30, step=1, value=7)
53
  decode_chunk_size = gr.Slider(label="Decode chunk size", minimum=1, maximum=25, step=1, value=7)
 
 
54
  run_button.click(
55
  fn=infer,
56
- inputs=[image, upscaler_prompt, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed],
57
  outputs=[video]
58
  )
59
  gr.Examples(examples=examples, inputs=image)
 
3
  from glob import glob
4
  from diffusers.utils import load_image
5
  import spaces
6
+ import random
7
  from panna.pipeline import PipelineSVDUpscale
8
 
9
 
10
+ max_64_bit_int = 1_000_000
11
+
12
  model = PipelineSVDUpscale(upscaler="instruct_ir")
13
  example_files = []
14
  root_url = "https://huggingface.co/spaces/multimodalart/stable-video-diffusion/resolve/main/images"
 
22
 
23
 
24
  @spaces.GPU(duration=120)
25
+ def infer(init_image, upscaler_prompt, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed, randomize_seed):
26
+ if randomize_seed:
27
+ seed = random.randint(0, max_64_bit_int)
28
+
29
  base_count = len(glob(os.path.join(tmp_output_dir, "*.mp4")))
30
  video_path = os.path.join(tmp_output_dir, f"{base_count:06d}.mp4")
31
  model(
 
47
  with gr.Row():
48
  with gr.Column():
49
  image = gr.Image(label="Upload your image", type="pil")
50
+ run_button = gr.Button(value="Generate", variant="primary")
51
+ video = gr.Video(autoplay=True)
52
  with gr.Accordion("Advanced options", open=False):
53
  upscaler_prompt = gr.Text("Correct the motion blur in this image so it is more clear", label="Prompt for upscaler", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
 
54
  num_frames = gr.Slider(label="Number of frames", minimum=1, maximum=100, step=1, value=25)
55
  motion_bucket_id = gr.Slider(label="Motion bucket id", minimum=1, maximum=255, step=1, value=127)
56
  noise_aug_strength = gr.Slider(label="Noise strength", minimum=0, maximum=1, step=0.01, value=0.02)
57
  fps = gr.Slider(label="Frames per second", minimum=5, maximum=30, step=1, value=7)
58
  decode_chunk_size = gr.Slider(label="Decode chunk size", minimum=1, maximum=25, step=1, value=7)
59
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
60
+ seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
61
  run_button.click(
62
  fn=infer,
63
+ inputs=[image, upscaler_prompt, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed, randomize_seed],
64
  outputs=[video]
65
  )
66
  gr.Examples(examples=examples, inputs=image)