Files changed (1) hide show
  1. app.py +22 -10
app.py CHANGED
@@ -164,6 +164,8 @@ st.sidebar.write("DELHI TECHNOLOGICAL UNIVERSITY")
164
  st.sidebar.title("Navigation")
165
  st.sidebar.write("Team Name: sadhya")
166
  app_mode = st.sidebar.selectbox("Choose the task", ["Welcome","Project Details", "Task 1","Team Details"])
 
 
167
  if app_mode == "Welcome":
168
  # Navigation Menu
169
  st.write("# Welcome to Amazon Smbhav! πŸŽ‰")
@@ -250,12 +252,12 @@ elif app_mode=="Project Details":
250
 
251
  """)
252
 
253
-
254
  elif app_mode == "Team Details":
255
  st.write("## Meet Our Team:")
256
  display_team_members(team_members)
257
  st.write("Delhi Technological University")
258
 
 
259
  elif app_mode == "Task 1":
260
  st.write("## Task 1: πŸ–ΌοΈ OCR to Extract Details πŸ“„")
261
  st.write("Using OCR to extract details from product packaging material, including brand name and pack size.")
@@ -271,15 +273,21 @@ elif app_mode == "Task 1":
271
  post_url = st.text_input("Enter Instagram Post URL:")
272
 
273
  if post_url:
274
- caption, image_url = get_instagram_post_details(post_url)
 
 
 
 
 
275
 
276
- if image_url:
277
- st.subheader("Caption:")
278
- st.write(caption)
279
- st.subheader("Image:")
280
- st.image(image_url, use_column_width=True)
281
- else:
282
- st.error("Failed to retrieve the post details. Please check the URL.")
 
283
 
284
  # File uploader for images (supports multiple files)
285
  uploaded_files = st.file_uploader("Upload images of products", type=["jpeg", "png", "jpg"], accept_multiple_files=True)
@@ -327,8 +335,8 @@ elif app_mode == "Task 1":
327
  product_name = clean_text_line
328
  else:
329
  product_details += clean_text_line + " "
330
-
331
  return product_name, product_details.strip()
 
332
  if st.button("Start Analysis"):
333
  simulate_progress()
334
  # Loop through each uploaded image and process them
@@ -344,6 +352,10 @@ elif app_mode == "Task 1":
344
  st.write(f"Extracting details from {uploaded_image.name}...")
345
  result = ocr.ocr(img_array, cls=True)
346
 
 
 
 
 
347
  # Process the OCR result to extract product name and properties
348
  product_name, product_details = extract_product_info(result)
349
 
 
164
  st.sidebar.title("Navigation")
165
  st.sidebar.write("Team Name: sadhya")
166
  app_mode = st.sidebar.selectbox("Choose the task", ["Welcome","Project Details", "Task 1","Team Details"])
167
+
168
+
169
  if app_mode == "Welcome":
170
  # Navigation Menu
171
  st.write("# Welcome to Amazon Smbhav! πŸŽ‰")
 
252
 
253
  """)
254
 
 
255
  elif app_mode == "Team Details":
256
  st.write("## Meet Our Team:")
257
  display_team_members(team_members)
258
  st.write("Delhi Technological University")
259
 
260
+
261
  elif app_mode == "Task 1":
262
  st.write("## Task 1: πŸ–ΌοΈ OCR to Extract Details πŸ“„")
263
  st.write("Using OCR to extract details from product packaging material, including brand name and pack size.")
 
273
  post_url = st.text_input("Enter Instagram Post URL:")
274
 
275
  if post_url:
276
+ caption, image_path = get_instagram_post_details(post_url)
277
+
278
+ if image_path and os.path.exists(image_path):
279
+ st.subheader("Caption:")
280
+ st.write(caption)
281
+ st.subheader("Image:")
282
 
283
+ # Load and display the image
284
+ image = Image.open(image_path)
285
+ st.image(image, use_column_width=True)
286
+
287
+ # Clean up (optional)
288
+ os.remove(image_path)
289
+ else:
290
+ st.error("Failed to retrieve the post details. Please check the URL.")
291
 
292
  # File uploader for images (supports multiple files)
293
  uploaded_files = st.file_uploader("Upload images of products", type=["jpeg", "png", "jpg"], accept_multiple_files=True)
 
335
  product_name = clean_text_line
336
  else:
337
  product_details += clean_text_line + " "
 
338
  return product_name, product_details.strip()
339
+
340
  if st.button("Start Analysis"):
341
  simulate_progress()
342
  # Loop through each uploaded image and process them
 
352
  st.write(f"Extracting details from {uploaded_image.name}...")
353
  result = ocr.ocr(img_array, cls=True)
354
 
355
+ #############################
356
+ #OCR result text to be parsed here through LLM and get product listing content.
357
+ #############################
358
+
359
  # Process the OCR result to extract product name and properties
360
  product_name, product_details = extract_product_info(result)
361