Spaces:
Sleeping
Sleeping
File size: 12,433 Bytes
d7955f6 026406c d7955f6 a05b44b d7955f6 a05b44b d7955f6 1a492a3 d7955f6 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 4a9200b 026406c 1a492a3 4a9200b a05b44b 1a492a3 a05b44b 1a492a3 a05b44b d7955f6 4a9200b d7955f6 4a9200b d7955f6 4a9200b f3f65fe d7955f6 4a9200b d7955f6 4a9200b d7955f6 4a9200b 1a492a3 a05b44b 1a492a3 d7955f6 a05b44b 1a492a3 a05b44b 1a492a3 d7955f6 f3f65fe d7955f6 7bc059d f3f65fe d7955f6 026406c d7955f6 026406c d7955f6 f3f65fe 026406c d7955f6 026406c d7955f6 026406c d7955f6 026406c d7955f6 7bc059d d7955f6 a05b44b 1a492a3 d7955f6 1a492a3 a05b44b f3f65fe 1a492a3 a05b44b 1a492a3 d7955f6 1a492a3 a05b44b 1a492a3 d7955f6 85eda94 d7955f6 85eda94 d7955f6 1a492a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# app.py
import os
import re
import torch
# import pdfplumber
from chromadb.utils import embedding_functions
from rerankers import Reranker
# from transformers import GPT2TokenizerFast
from groq import Groq
from chromadb import PersistentClient
import gradio as gr
# Retrieve the API key from environment variables (Hugging Face Secrets)
groq_api_key = os.environ.get('GROQ_API_KEY')
# Initialize the chat client with the API key
chat_client = Groq(api_key=groq_api_key)
model = "llama-3.2-90b-text-preview"
def edit_text(text):
pattern = re.compile(r'\[(\d+)\]')
prev_num = None
output = []
last_end = 0
# Iterate over the citations using finditer
for match in pattern.finditer(text):
start, end = match.span()
current_num = match.group(1)
# Append text from the end of the last match to the start of the current match
output.append(text[last_end:start])
if prev_num == current_num:
# Remove the previous citation by not appending it
pass # We effectively skip appending anything, which removes the duplicate
else:
# Append the current citation with 'Page ' added
output.append(f'[Page {current_num}]')
prev_num = current_num
last_end = end
# Append any remaining text after the last citation
output.append(text[last_end:])
# Join all parts to form the modified text
modified_text = ''.join(output)
return modified_text
# def edit_text(text):
# # Find all citations and their positions
# citation_matches = list(re.finditer(r'\[(\d+)\]', text))
# # List to store indices of citations to remove
# indices_to_remove = []
# prev_num = None
# prev_index = None
# # Identify consecutive duplicate citations
# for i in range(len(citation_matches)):
# current_citation = citation_matches[i]
# current_num = current_citation.group(1)
# if prev_num == current_num:
# # Mark the previous citation for removal
# indices_to_remove.append(prev_index)
# prev_num = current_num
# prev_index = i
# # Reconstruct the text with modifications
# output_parts = []
# last_end = 0
# for i in range(len(citation_matches)):
# m = citation_matches[i]
# start, end = m.span()
# if i in indices_to_remove:
# # Remove citation
# output_parts.append(text[last_end:start])
# else:
# # Keep and modify citation
# output_parts.append(text[last_end:start])
# page_num = m.group(1)
# new_citation = '[Page ' + page_num + ']'
# output_parts.append(new_citation)
# last_end = end
# # Append any remaining text after the last citation
# output_parts.append(text[last_end:])
# modified_text = ''.join(output_parts)
# return modified_text
# def parse_pdf(pdf_path):
# texts = []
# with pdfplumber.open(pdf_path) as pdf:
# for page_num, page in enumerate(pdf.pages, start=1):
# text = page.extract_text()
# if text:
# texts.append({
# 'text': text,
# 'metadata': {
# 'page_number': page_num
# }
# })
# return texts
# def preprocess_text(text):
# # ... (same as your original function)
# text = re.sub(r'\s+', ' ', text)
# text = text.strip()
# return text
def call_Llama_api(query, context):
chat_completion = chat_client.chat.completions.create(
messages = [
{
"role": "system",
"content": "You are a car technician. Given the user's question and relevant excerpts from different car manuals, answer the question by including direct quotes from the car manual. Always cite the page number in [] as mentioned in the excerpts used (the ones you are quoting from).\n\nFor Example: User Question: What is storage capacity of Tesla Model 3? Relevant Excerpt(s) : Page 108:: Front storage is 50 litres. , Page 150:: Rear storage is 240 litres.\n Answer: Tesla model 3 front storage is 50 litres [108] and rear storage is 240 litres [150]. Therefore total storage is 50+240 = 290 litres.\n\nHope the example above helped. Only cite an excerpt when you are explicitly referencing it."
},
{
"role": "user",
"content": "User Question: " + query + "\n\nRelevant Excerpt(s):\n\n" + context,
}
],
temperature=0.6,
max_tokens=200,
top_p=1,
stream=False,
stop= None,
model = model
)
response = chat_completion.choices[0].message.content
return response
# def call_Llama_api(query, context):
# # ... (same as your original function)
# chat_completion = chat_client.chat.completions.create(
# messages=[
# {
# "role": "system",
# "content": "You are a car technician. Given the user's question and relevant excerpts from different car manuals, answer the question by including direct quotes from the correct car manual. Be concise and to the point in your response."
# },
# {
# "role": "user",
# "content": "User Question: " + query + "\n\nRelevant Excerpt(s):\n\n" + context,
# }
# ],
# temperature=0.6,
# max_tokens=200,
# top_p=1,
# stream=False,
# stop=None,
# model=model
# )
# response = chat_completion.choices[0].message.content
# return response
# def chunk_texts(texts, max_tokens=500, overlap_tokens=50):
# """
# Splits texts into chunks based on paragraphs with overlap to preserve context.
# """
# global tokenizer
# chunks = []
# for item in texts:
# text = preprocess_text(item['text'])
# if not text:
# continue
# metadata = item['metadata']
# # Split text into paragraphs
# paragraphs = text.split('\n\n')
# current_chunk = ''
# current_tokens = 0
# for i, paragraph in enumerate(paragraphs):
# paragraph = paragraph.strip()
# if not paragraph:
# continue
# paragraph_tokens = len(tokenizer.encode(paragraph))
# if current_tokens + paragraph_tokens <= max_tokens:
# current_chunk += paragraph + '\n\n'
# current_tokens += paragraph_tokens
# else:
# # Save the current chunk
# chunk = {
# 'text': current_chunk.strip(),
# 'metadata': metadata
# }
# chunks.append(chunk)
# # Start a new chunk with overlap
# overlap_text = ' '.join(current_chunk.split()[-overlap_tokens:])
# current_chunk = overlap_text + ' ' + paragraph + '\n\n'
# current_tokens = len(tokenizer.encode(current_chunk))
# if current_chunk:
# chunk = {
# 'text': current_chunk.strip(),
# 'metadata': metadata
# }
# chunks.append(chunk)
# return chunks
def is_car_model_available(query, available_models):
# ... (same as your original function)
for model in available_models:
if model.lower() in query.lower():
return model
return None
# def extract_car_model(pdf_filename):
# base_name = os.path.basename(pdf_filename)
# match = re.search(r'manual_(.+)\.pdf', base_name)
# if match:
# model_name = match.group(1).replace('_', ' ').title()
# return model_name
# else:
# return 'Unknown Model'
def colbert_rerank(query=None, chunks=None):
# ... (same as your original function)
d = ranker.rank(query=query, docs=chunks)
reranked_chunks = [d[i].text for i in range(len(chunks))]
return reranked_chunks
def process_query(query):
# Use global variables
global available_car_models, collection
# print("Input Query:",query)
# print(type(query))
car_model = is_car_model_available(query, available_car_models)
if not car_model:
return "The manual for the specified car model is not present."
# Initial retrieval from ChromaDB
results = collection.query(
query_texts=[query],
n_results=50,
where={"car_model": car_model},
include=['documents', 'metadatas']
)
if not results['documents']:
return "No relevant information found in the manual."
# Extract chunks and metadata
pre_chunks = results['documents'][0]
metadatas = results['metadatas'][0]
chunks = [f'Page {y["page_number"]}:: {x}' for x,y in zip(pre_chunks,metadatas)]
reranked_chunks = colbert_rerank(query, chunks)
final_context = " ".join(reranked_chunks[:10])
answer = call_Llama_api(query, final_context)
last_complete = answer.rfind('.')
# last_newline = answer.rfind('\n')
# last_complete = max(last_period, last_newline)
if last_complete != -1:
answer = answer[:last_complete + 1].strip()
answer = edit_text(answer)
# Prepare citations
# citations = [
# f"Page {meta.get('page_number', 'N/A')}" for meta in metadatas[:5]
# ]
# citations_text = "Pages cited from:\n" + "\n".join(citations)
# return f"{answer}\n\n{citations_text}"
return answer
# Initialize global variables
def initialize():
global collection, available_car_models, ranker
# Check for CUDA availability
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}. new commit")
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # For token counting
# Initialize embedding model
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L12-v2", device=device
)
client = PersistentClient(path="./chromadb")
# Get the collection
collection_name = "car_manuals5"
# if collection_name in [col.name for col in client.list_collections()]:
# collection = client.get_collection(
# name=collection_name,
# embedding_function=embedding_function
# )
available_car_models = ['TIAGO', 'Astor']
# else:
collection = client.get_collection(
name=collection_name,
embedding_function=embedding_function
)
# collection = client.get_or_create_collection(
# name=collection_name,
# embedding_function=embedding_function
# )
# Set available car models
# available_car_models = ['TIAGO', 'Astor']
# pdf_files = ['./car_manuals/manual_Tiago.pdf', './car_manuals/manual_Astor.pdf']
# available_car_models = []
# for pdf_file in pdf_files:
# print(f"Parsing {pdf_file}...")
# pdf_texts = parse_pdf(pdf_file)
# car_model = extract_car_model(pdf_file)
# available_car_models.append(car_model)
# # Add car model to metadata
# for item in pdf_texts:
# item['metadata']['car_model'] = car_model
# # Chunk texts using the refined strategy
# chunks = chunk_texts(pdf_texts, max_tokens=500, overlap_tokens=50)
# # Prepare data for ChromaDB
# documents = [chunk['text'] for chunk in chunks]
# metadatas = [chunk['metadata'] for chunk in chunks]
# ids = [f"{car_model}_{i}" for i in range(len(documents))]
# # Add to ChromaDB collection
# collection.add(
# documents=documents,
# metadatas=metadatas,
# ids=ids
# )
# Initialize the ranker
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
# Call initialize function
initialize()
# Set up the Gradio interface
iface = gr.Interface(
fn=process_query,
inputs=gr.Textbox(lines=2, placeholder='Enter your question here...'),
outputs='text',
title='Car Manual Assistant',
description='Ask a question about Tata Tiago or MG Astor.',
)
if __name__ == "__main__":
# iface.launch(server_name="0.0.0.0", server_port=7860)
iface.launch() |