Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
import plotly.graph_objects as go | |
import streamlit.components.v1 as components | |
from datetime import datetime | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import defaultdict, deque, Counter | |
from dotenv import load_dotenv | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
from openai import OpenAI | |
import extra_streamlit_components as stx | |
from streamlit.runtime.scriptrunner import get_script_run_ctx | |
import asyncio | |
import edge_tts | |
# 🎯 1. Core Configuration & Setup | |
st.set_page_config( | |
page_title="🚲TalkingAIResearcher🏆", | |
page_icon="🚲🏆", | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "🚲TalkingAIResearcher🏆" | |
} | |
) | |
load_dotenv() | |
# Add available English voices for Edge TTS | |
EDGE_TTS_VOICES = [ | |
"en-US-AriaNeural", # Default voice | |
"en-US-GuyNeural", | |
"en-US-JennyNeural", | |
"en-GB-SoniaNeural", | |
"en-GB-RyanNeural", | |
"en-AU-NatashaNeural", | |
"en-AU-WilliamNeural", | |
"en-CA-ClaraNeural", | |
"en-CA-LiamNeural" | |
] | |
# Initialize session state variables | |
if 'tts_voice' not in st.session_state: | |
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice | |
if 'audio_format' not in st.session_state: | |
st.session_state['audio_format'] = 'mp3' # 🆕 Default audio format | |
# 🔑 2. API Setup & Clients | |
openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
xai_key = os.getenv('xai',"") | |
if 'OPENAI_API_KEY' in st.secrets: | |
openai_api_key = st.secrets['OPENAI_API_KEY'] | |
if 'ANTHROPIC_API_KEY' in st.secrets: | |
anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
openai.api_key = openai_api_key | |
claude_client = anthropic.Anthropic(api_key=anthropic_key) | |
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
HF_KEY = os.getenv('HF_KEY') | |
API_URL = os.getenv('API_URL') | |
# 📝 3. Session State Management | |
if 'transcript_history' not in st.session_state: | |
st.session_state['transcript_history'] = [] | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
if 'openai_model' not in st.session_state: | |
st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
if 'messages' not in st.session_state: | |
st.session_state['messages'] = [] | |
if 'last_voice_input' not in st.session_state: | |
st.session_state['last_voice_input'] = "" | |
if 'editing_file' not in st.session_state: | |
st.session_state['editing_file'] = None | |
if 'edit_new_name' not in st.session_state: | |
st.session_state['edit_new_name'] = "" | |
if 'edit_new_content' not in st.session_state: | |
st.session_state['edit_new_content'] = "" | |
if 'viewing_prefix' not in st.session_state: | |
st.session_state['viewing_prefix'] = None | |
if 'should_rerun' not in st.session_state: | |
st.session_state['should_rerun'] = False | |
if 'old_val' not in st.session_state: | |
st.session_state['old_val'] = None | |
if 'last_query' not in st.session_state: | |
st.session_state['last_query'] = "" # 🆕 Store the last query for zip naming | |
# 🎨 4. Custom CSS | |
st.markdown(""" | |
<style> | |
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
.stButton>button { | |
margin-right: 0.5rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
FILE_EMOJIS = { | |
"md": "📝", | |
"mp3": "🎵", | |
"wav": "🔊" # 🆕 Add emoji for WAV | |
} | |
# 🧠 5. High-Information Content Extraction | |
def get_high_info_terms(text: str, top_n=10) -> list: | |
"""Extract high-information terms from text, including key phrases.""" | |
stop_words = set([ | |
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', | |
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', | |
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', | |
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', | |
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', | |
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', | |
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' | |
]) | |
key_phrases = [ | |
'artificial intelligence', 'machine learning', 'deep learning', 'neural network', | |
'personal assistant', 'natural language', 'computer vision', 'data science', | |
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', | |
'large language model', 'transformer model', 'attention mechanism', | |
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', | |
'cognitive science', 'human computer', 'decision making', 'arxiv search', | |
'research paper', 'scientific study', 'empirical analysis' | |
] | |
# Extract bi-grams and uni-grams | |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
combined = words + bi_grams | |
# Filter out stop words and short words | |
filtered = [ | |
term for term in combined | |
if term not in stop_words | |
and len(term.split()) <= 2 # Limit to uni-grams and bi-grams | |
and any(c.isalpha() for c in term) | |
] | |
# Count frequencies | |
counter = Counter(filtered) | |
most_common = [term for term, freq in counter.most_common(top_n)] | |
return most_common | |
def clean_text_for_filename(text: str) -> str: | |
"""Remove punctuation and short filler words, return a compact string.""" | |
text = text.lower() | |
text = re.sub(r'[^\w\s-]', '', text) | |
words = text.split() | |
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) | |
filtered = [w for w in words if len(w)>3 and w not in stop_short] | |
return '_'.join(filtered)[:200] | |
# 📁 6. File Operations | |
def generate_filename(prompt, response, file_type="md"): | |
""" | |
Generate filename with meaningful terms and short dense clips from prompt & response. | |
The filename should be about 150 chars total, include high-info terms, and a clipped snippet. | |
""" | |
prefix = datetime.now().strftime("%y%m_%H%M") + "_" | |
combined = (prompt + " " + response).strip() | |
info_terms = get_high_info_terms(combined, top_n=10) | |
# Include a short snippet from prompt and response | |
snippet = (prompt[:100] + " " + response[:100]).strip() | |
snippet_cleaned = clean_text_for_filename(snippet) | |
# Combine info terms and snippet | |
name_parts = info_terms + [snippet_cleaned] | |
full_name = '_'.join(name_parts) | |
# Trim to ~150 chars | |
if len(full_name) > 150: | |
full_name = full_name[:150] | |
filename = f"{prefix}{full_name}.{file_type}" | |
return filename | |
def create_file(prompt, response, file_type="md"): | |
"""Create file with intelligent naming""" | |
filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(prompt + "\n\n" + response) | |
return filename | |
def get_download_link(file, file_type="zip"): | |
"""Generate download link for file""" | |
with open(file, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
if file_type == "zip": | |
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>' | |
elif file_type == "mp3": | |
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>' | |
elif file_type == "wav": | |
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>' # 🆕 WAV download link | |
elif file_type == "md": | |
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>' | |
else: | |
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>' | |
# 🔊 7. Audio Processing | |
def clean_for_speech(text: str) -> str: | |
"""Clean text for speech synthesis""" | |
text = text.replace("\n", " ") | |
text = text.replace("</s>", " ") | |
text = text.replace("#", "") | |
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
text = re.sub(r"\s+", " ", text).strip() | |
return text | |
def speech_synthesis_html(result): | |
"""Create HTML for speech synthesis""" | |
html_code = f""" | |
<html><body> | |
<script> | |
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}"); | |
window.speechSynthesis.speak(msg); | |
</script> | |
</body></html> | |
""" | |
components.html(html_code, height=0) | |
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
"""Generate audio using Edge TTS""" | |
text = clean_for_speech(text) | |
if not text.strip(): | |
return None | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
out_fn = generate_filename(text, text, file_type=file_format) | |
await communicate.save(out_fn) | |
return out_fn | |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
"""Wrapper for edge TTS generation""" | |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) | |
def play_and_download_audio(file_path, file_type="mp3"): | |
"""Play and provide download link for audio""" | |
if file_path and os.path.exists(file_path): | |
if file_type == "mp3": | |
st.audio(file_path) | |
elif file_type == "wav": | |
st.audio(file_path) | |
dl_link = get_download_link(file_path, file_type=file_type) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
# 🎬 8. Media Processing | |
def process_image(image_path, user_prompt): | |
"""Process image with GPT-4V""" | |
with open(image_path, "rb") as imgf: | |
image_data = imgf.read() | |
b64img = base64.b64encode(image_data).decode("utf-8") | |
resp = openai_client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": [ | |
{"type": "text", "text": user_prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} | |
]} | |
], | |
temperature=0.0, | |
) | |
return resp.choices[0].message.content | |
def process_audio_file(audio_path): | |
"""Process audio with Whisper""" | |
with open(audio_path, "rb") as f: | |
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) | |
st.session_state.messages.append({"role": "user", "content": transcription.text}) | |
return transcription.text | |
def process_video(video_path, seconds_per_frame=1): | |
"""Extract frames from video""" | |
vid = cv2.VideoCapture(video_path) | |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vid.get(cv2.CAP_PROP_FPS) | |
skip = int(fps*seconds_per_frame) | |
frames_b64 = [] | |
for i in range(0, total, skip): | |
vid.set(cv2.CAP_PROP_POS_FRAMES, i) | |
ret, frame = vid.read() | |
if not ret: | |
break | |
_, buf = cv2.imencode(".jpg", frame) | |
frames_b64.append(base64.b64encode(buf).decode("utf-8")) | |
vid.release() | |
return frames_b64 | |
def process_video_with_gpt(video_path, prompt): | |
"""Analyze video frames with GPT-4V""" | |
frames = process_video(video_path) | |
resp = openai_client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role":"system","content":"Analyze video frames."}, | |
{"role":"user","content":[ | |
{"type":"text","text":prompt}, | |
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] | |
]} | |
] | |
) | |
return resp.choices[0].message.content | |
# 🤖 9. AI Model Integration | |
def save_full_transcript(query, text): | |
"""Save full transcript of Arxiv results as a file.""" | |
create_file(query, text, "md") | |
def parse_arxiv_refs(ref_text: str): | |
""" | |
Parse papers by finding lines with two pipe characters as title lines. | |
Returns list of paper dictionaries with audio files. | |
""" | |
if not ref_text: | |
return [] | |
results = [] | |
current_paper = {} | |
lines = ref_text.split('\n') | |
for i, line in enumerate(lines): | |
# Check if this is a title line (contains exactly 2 pipe characters) | |
if line.count('|') == 2: | |
# If we have a previous paper, add it to results | |
if current_paper: | |
results.append(current_paper) | |
if len(results) >= 20: # Limit to 20 papers | |
break | |
# Parse new paper header | |
try: | |
# Remove ** and split by | | |
header_parts = line.strip('* ').split('|') | |
date = header_parts[0].strip() | |
title = header_parts[1].strip() | |
# Extract arXiv URL if present | |
url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
current_paper = { | |
'date': date, | |
'title': title, | |
'url': url, | |
'authors': '', | |
'summary': '', | |
'content_start': i + 1 # Track where content begins | |
} | |
except Exception as e: | |
st.warning(f"Error parsing paper header: {str(e)}") | |
current_paper = {} | |
continue | |
# If we have a current paper and this isn't a title line, add to content | |
elif current_paper: | |
if not current_paper['authors']: # First line after title is authors | |
current_paper['authors'] = line.strip('* ') | |
else: # Rest is summary | |
if current_paper['summary']: | |
current_paper['summary'] += ' ' + line.strip() | |
else: | |
current_paper['summary'] = line.strip() | |
# Don't forget the last paper | |
if current_paper: | |
results.append(current_paper) | |
return results[:20] # Ensure we return maximum 20 papers | |
def create_paper_audio_files(papers, input_question): | |
""" | |
Create audio files for each paper's content and add file paths to paper dict. | |
Also, display each audio as it's generated. | |
""" | |
# Collect all content for combined summary | |
combined_titles = [] | |
for paper in papers: | |
try: | |
# Generate audio for full content only | |
full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
full_text = clean_for_speech(full_text) | |
# Determine file format based on user selection | |
file_format = st.session_state['audio_format'] | |
full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'], file_format=file_format) | |
paper['full_audio'] = full_file | |
# Display the audio immediately after generation | |
st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(full_file)}") | |
play_and_download_audio(full_file, file_type=file_format) | |
combined_titles.append(paper['title']) | |
except Exception as e: | |
st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
paper['full_audio'] = None | |
# After all individual audios, create a combined summary audio | |
if combined_titles: | |
combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}" | |
file_format = st.session_state['audio_format'] | |
combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format) | |
st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio") | |
play_and_download_audio(combined_file, file_type=file_format) | |
papers.append({'title': 'Combined Summary', 'full_audio': combined_file}) | |
def display_papers(papers): | |
""" | |
Display papers with their audio controls using URLs as unique keys. | |
""" | |
st.write("## Research Papers") | |
papercount=0 | |
for idx, paper in enumerate(papers): | |
papercount = papercount + 1 | |
if (papercount<=20): | |
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True): | |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**") | |
st.markdown(f"*{paper['authors']}*") | |
st.markdown(paper['summary']) | |
# Single audio control for full content | |
if paper.get('full_audio'): | |
st.write("📚 Paper Audio") | |
file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.') | |
if file_ext == "mp3": | |
st.audio(paper['full_audio']) | |
elif file_ext == "wav": | |
st.audio(paper['full_audio']) | |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
titles_summary=True, full_audio=False): | |
"""Perform Arxiv search with audio generation per paper.""" | |
start = time.time() | |
# Query the HF RAG pipeline | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
refs = client.predict(q, 20, "Semantic Search", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
api_name="/update_with_rag_md")[0] | |
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
True, api_name="/ask_llm") | |
# Combine for final text output | |
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}" | |
st.markdown(result) | |
# Parse and process papers | |
papers = parse_arxiv_refs(refs) | |
if papers: | |
create_paper_audio_files(papers, input_question=q) | |
display_papers(papers) | |
else: | |
st.warning("No papers found in the response.") | |
elapsed = time.time()-start | |
st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
# Save full transcript | |
create_file(q, result, "md") | |
return result | |
def process_with_gpt(text): | |
"""Process text with GPT-4""" | |
if not text: | |
return | |
st.session_state.messages.append({"role":"user","content":text}) | |
with st.chat_message("user"): | |
st.markdown(text) | |
with st.chat_message("assistant"): | |
c = openai_client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=st.session_state.messages, | |
stream=False | |
) | |
ans = c.choices[0].message.content | |
st.write("GPT-4o: " + ans) | |
create_file(text, ans, "md") | |
st.session_state.messages.append({"role":"assistant","content":ans}) | |
return ans | |
def process_with_claude(text): | |
"""Process text with Claude""" | |
if not text: | |
return | |
with st.chat_message("user"): | |
st.markdown(text) | |
with st.chat_message("assistant"): | |
r = claude_client.messages.create( | |
model="claude-3-sonnet-20240229", | |
max_tokens=1000, | |
messages=[{"role":"user","content":text}] | |
) | |
ans = r.content[0].text | |
st.write("Claude-3.5: " + ans) | |
create_file(text, ans, "md") | |
st.session_state.chat_history.append({"user":text,"claude":ans}) | |
return ans | |
# 📂 10. File Management | |
def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
"""Create zip with intelligent naming based on top 10 common words.""" | |
# Exclude 'readme.md' | |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
return None | |
# Collect content for high-info term extraction | |
all_content = [] | |
for f in all_files: | |
if f.endswith('.md'): | |
with open(f, 'r', encoding='utf-8') as file: | |
all_content.append(file.read()) | |
elif f.endswith('.mp3') or f.endswith('.wav'): | |
# Replace underscores with spaces and extract basename without extension | |
basename = os.path.splitext(os.path.basename(f))[0] | |
words = basename.replace('_', ' ') | |
all_content.append(words) | |
# Include the input question | |
all_content.append(input_question) | |
combined_content = " ".join(all_content) | |
info_terms = get_high_info_terms(combined_content, top_n=10) | |
timestamp = datetime.now().strftime("%y%m_%H%M") | |
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10]) | |
zip_name = f"{timestamp}_{name_text}.zip" | |
with zipfile.ZipFile(zip_name,'w') as z: | |
for f in all_files: | |
z.write(f) | |
return zip_name | |
def load_files_for_sidebar(): | |
"""Load and group files for sidebar display based on first 9 characters of filename""" | |
md_files = glob.glob("*.md") | |
mp3_files = glob.glob("*.mp3") | |
wav_files = glob.glob("*.wav") | |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
all_files = md_files + mp3_files + wav_files | |
groups = defaultdict(list) | |
for f in all_files: | |
# Get first 9 characters of filename (timestamp) as group name | |
basename = os.path.basename(f) | |
group_name = basename[:9] if len(basename) >= 9 else 'Other' | |
groups[group_name].append(f) | |
# Sort groups based on latest file modification time | |
sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True) | |
return sorted_groups | |
def extract_keywords_from_md(files): | |
"""Extract keywords from markdown files""" | |
text = "" | |
for f in files: | |
if f.endswith(".md"): | |
c = open(f,'r',encoding='utf-8').read() | |
text += " " + c | |
return get_high_info_terms(text, top_n=5) | |
def display_file_manager_sidebar(groups_sorted): | |
"""Display file manager in sidebar with timestamp-based groups""" | |
st.sidebar.title("🎵 Audio & Docs Manager") | |
all_md = [] | |
all_mp3 = [] | |
all_wav = [] | |
for group_name, files in groups_sorted: | |
for f in files: | |
if f.endswith(".md"): | |
all_md.append(f) | |
elif f.endswith(".mp3"): | |
all_mp3.append(f) | |
elif f.endswith(".wav"): | |
all_wav.append(f) | |
top_bar = st.sidebar.columns(4) | |
with top_bar[0]: | |
if st.button("🗑 DelAllMD"): | |
for f in all_md: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with top_bar[1]: | |
if st.button("🗑 DelAllMP3"): | |
for f in all_mp3: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with top_bar[2]: | |
if st.button("🗑 DelAllWAV"): | |
for f in all_wav: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with top_bar[3]: | |
if st.button("⬇️ ZipAll"): | |
zip_name = create_zip_of_files(all_md, all_mp3, all_wav, input_question=st.session_state.get('last_query', '')) | |
if zip_name: | |
st.sidebar.markdown(get_download_link(zip_name, file_type="zip"), unsafe_allow_html=True) | |
for group_name, files in groups_sorted: | |
timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None | |
group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name | |
with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True): | |
c1,c2 = st.columns(2) | |
with c1: | |
if st.button("👀ViewGrp", key="view_group_"+group_name): | |
st.session_state.viewing_prefix = group_name | |
with c2: | |
if st.button("🗑DelGrp", key="del_group_"+group_name): | |
for f in files: | |
os.remove(f) | |
st.success(f"Deleted group {group_name}!") | |
st.session_state.should_rerun = True | |
for f in files: | |
fname = os.path.basename(f) | |
ext = os.path.splitext(fname)[1].lower() | |
emoji = FILE_EMOJIS.get(ext.strip('.'), '') | |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%H:%M:%S") | |
st.write(f"{emoji} **{fname}** - {ctime}") | |
# 🎯 11. Main Application | |
def main(): | |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research") | |
# Add voice selector to sidebar | |
st.sidebar.markdown("### 🎤 Voice Settings") | |
selected_voice = st.sidebar.selectbox( | |
"Select TTS Voice:", | |
options=EDGE_TTS_VOICES, | |
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
) | |
# Add audio format selector to sidebar | |
st.sidebar.markdown("### 🔊 Audio Format") | |
selected_format = st.sidebar.radio( | |
"Choose Audio Format:", | |
options=["MP3", "WAV"], | |
index=0 # Default to MP3 | |
) | |
# Update session state if voice or format changes | |
if selected_voice != st.session_state['tts_voice']: | |
st.session_state['tts_voice'] = selected_voice | |
st.rerun() | |
if selected_format.lower() != st.session_state['audio_format']: | |
st.session_state['audio_format'] = selected_format.lower() | |
st.rerun() | |
tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True) | |
mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
val = mycomponent(my_input_value="Hello") | |
# Show input in a text box for editing if detected | |
if val: | |
val_stripped = val.replace('\\n', ' ') | |
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100) | |
#edited_input = edited_input.replace('\n', ' ') | |
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) | |
col1, col2 = st.columns(2) | |
with col1: | |
autorun = st.checkbox("⚙ AutoRun", value=True) | |
with col2: | |
full_audio = st.checkbox("📚FullAudio", value=False, | |
help="Generate full audio response") | |
input_changed = (val != st.session_state.old_val) | |
if autorun and input_changed: | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input # Store the last query for zip naming | |
if run_option == "Arxiv": | |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
titles_summary=True, full_audio=full_audio) | |
else: | |
if run_option == "GPT-4o": | |
process_with_gpt(edited_input) | |
elif run_option == "Claude-3.5": | |
process_with_claude(edited_input) | |
else: | |
if st.button("▶ Run"): | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input # Store the last query for zip naming | |
if run_option == "Arxiv": | |
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
titles_summary=True, full_audio=full_audio) | |
else: | |
if run_option == "GPT-4o": | |
process_with_gpt(edited_input) | |
elif run_option == "Claude-3.5": | |
process_with_claude(edited_input) | |
if tab_main == "🔍 ArXiv": | |
st.subheader("🔍 Query ArXiv") | |
q = st.text_input("🔍 Query:") | |
st.markdown("### 🎛 Options") | |
vocal_summary = st.checkbox("🎙ShortAudio", value=True) | |
extended_refs = st.checkbox("📜LongRefs", value=False) | |
titles_summary = st.checkbox("🔖TitlesOnly", value=True) | |
full_audio = st.checkbox("📚FullAudio", value=False, | |
help="Full audio of results") | |
full_transcript = st.checkbox("🧾FullTranscript", value=False, | |
help="Generate a full transcript file") | |
if q and st.button("🔍Run"): | |
st.session_state.last_query = q # Store the last query for zip naming | |
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
titles_summary=titles_summary, full_audio=full_audio) | |
if full_transcript: | |
save_full_transcript(q, result) | |
st.markdown("### Change Prompt & Re-Run") | |
q_new = st.text_input("🔄 Modify Query:") | |
if q_new and st.button("🔄 Re-Run with Modified Query"): | |
st.session_state.last_query = q_new # Update last query | |
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
titles_summary=titles_summary, full_audio=full_audio) | |
if full_transcript: | |
save_full_transcript(q_new, result) | |
elif tab_main == "🎤 Voice": | |
st.subheader("🎤 Voice Input") | |
user_text = st.text_area("💬 Message:", height=100) | |
user_text = user_text.strip().replace('\n', ' ') | |
if st.button("📨 Send"): | |
process_with_gpt(user_text) | |
st.subheader("📜 Chat History") | |
t1,t2=st.tabs(["Claude History","GPT-4o History"]) | |
with t1: | |
for c in st.session_state.chat_history: | |
st.write("**You:**", c["user"]) | |
st.write("**Claude:**", c["claude"]) | |
with t2: | |
for m in st.session_state.messages: | |
with st.chat_message(m["role"]): | |
st.markdown(m["content"]) | |
elif tab_main == "📸 Media": | |
st.header("📸 Images & 🎥 Videos") | |
tabs = st.tabs(["🖼 Images", "🎥 Video"]) | |
with tabs[0]: | |
imgs = glob.glob("*.png")+glob.glob("*.jpg") | |
if imgs: | |
c = st.slider("Cols",1,5,3) | |
cols = st.columns(c) | |
for i,f in enumerate(imgs): | |
with cols[i%c]: | |
st.image(Image.open(f),use_container_width=True) | |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"): | |
a = process_image(f,"Describe this image.") | |
st.markdown(a) | |
else: | |
st.write("No images found.") | |
with tabs[1]: | |
vids = glob.glob("*.mp4") | |
if vids: | |
for v in vids: | |
with st.expander(f"🎥 {os.path.basename(v)}"): | |
st.video(v) | |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): | |
a = process_video_with_gpt(v,"Describe video.") | |
st.markdown(a) | |
else: | |
st.write("No videos found.") | |
elif tab_main == "📝 Editor": | |
if getattr(st.session_state,'current_file',None): | |
st.subheader(f"Editing: {st.session_state.current_file}") | |
new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300) | |
if st.button("💾 Save"): | |
with open(st.session_state.current_file,'w',encoding='utf-8') as f: | |
f.write(new_text) | |
st.success("Updated!") | |
st.session_state.should_rerun = True | |
else: | |
st.write("Select a file from the sidebar to edit.") | |
# Load and display files in the sidebar | |
groups_sorted = load_files_for_sidebar() | |
display_file_manager_sidebar(groups_sorted) | |
if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted): | |
st.write("---") | |
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
for group_name, files in groups_sorted: | |
if group_name == st.session_state.viewing_prefix: | |
for f in files: | |
fname = os.path.basename(f) | |
ext = os.path.splitext(fname)[1].lower().strip('.') | |
st.write(f"### {fname}") | |
if ext == "md": | |
content = open(f,'r',encoding='utf-8').read() | |
st.markdown(content) | |
elif ext == "mp3": | |
st.audio(f) | |
elif ext == "wav": | |
st.audio(f) # 🆕 Handle WAV files | |
else: | |
st.markdown(get_download_link(f), unsafe_allow_html=True) | |
break | |
if st.button("❌ Close"): | |
st.session_state.viewing_prefix = None | |
markdownPapers = """ | |
# Levels of AGI | |
## 1. Performance (rows) x Generality (columns) | |
- **Narrow** | |
- *clearly scoped or set of tasks* | |
- **General** | |
- *wide range of non-physical tasks, including metacognitive abilities like learning new skills* | |
## 2. Levels of AGI | |
### 2.1 Level 0: No AI | |
- **Narrow Non-AI** | |
- Calculator software; compiler | |
- **General Non-AI** | |
- Human-in-the-loop computing, e.g., Amazon Mechanical Turk | |
### 2.2 Level 1: Emerging | |
*equal to or somewhat better than an unskilled human* | |
- **Emerging Narrow AI** | |
- GOFAI; simple rule-based systems | |
- Example: SHRDLU | |
- *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095) | |
- **Emerging AGI** | |
- ChatGPT (OpenAI, 2023) | |
- Bard (Anil et al., 2023) | |
- *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712) | |
- LLaMA 2 (Touvron et al., 2023) | |
- *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288) | |
### 2.3 Level 2: Competent | |
*at least 50th percentile of skilled adults* | |
- **Competent Narrow AI** | |
- Toxicity detectors such as Jigsaw | |
- *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905) | |
- Smart Speakers (Apple, Amazon, Google) | |
- VQA systems (PaLI) | |
- *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298) | |
- Watson (IBM) | |
- SOTA LLMs for subsets of tasks | |
- **Competent AGI** | |
- Not yet achieved | |
### 2.4 Level 3: Expert | |
*at least 90th percentile of skilled adults* | |
- **Expert Narrow AI** | |
- Spelling & grammar checkers (Grammarly, 2023) | |
- Generative image models | |
- Example: Imagen | |
- *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487) | |
- Example: DALL·E 2 | |
- *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125) | |
- **Expert AGI** | |
- Not yet achieved | |
### 2.5 Level 4: Virtuoso | |
*at least 99th percentile of skilled adults* | |
- **Virtuoso Narrow AI** | |
- Deep Blue | |
- *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue) | |
- AlphaGo | |
- *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961) | |
- **Virtuoso AGI** | |
- Not yet achieved | |
### 2.6 Level 5: Superhuman | |
*outperforms 100% of humans* | |
- **Superhuman Narrow AI** | |
- AlphaFold | |
- *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2) | |
- AlphaZero | |
- *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404) | |
- StockFish | |
- *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org) | |
- **Artificial Superintelligence (ASI)** | |
- Not yet achieved | |
# 🧬 Innovative Architecture of AlphaFold2: A Hybrid System | |
## 1. 🔢 Input Sequence | |
- The process starts with an **input sequence** (protein sequence). | |
## 2. 🗄️ Database Searches | |
- **Genetic database search** 🔍 | |
- Searches genetic databases to retrieve related sequences. | |
- **Structure database search** 🔍 | |
- Searches structural databases for template structures. | |
- **Pairing** 🤝 | |
- Aligns sequences and structures for further analysis. | |
## 3. 🧩 MSA (Multiple Sequence Alignment) | |
- **MSA representation** 📊 (r,c) | |
- Representation of multiple aligned sequences used as input. | |
## 4. 📑 Templates | |
- Template structures are paired to assist the model. | |
## 5. 🔄 Evoformer (48 blocks) | |
- A **deep learning module** that refines representations: | |
- **MSA representation** 🧱 | |
- **Pair representation** 🧱 (r,c) | |
## 6. 🧱 Structure Module (8 blocks) | |
- Converts the representations into: | |
- **Single representation** (r,c) | |
- **Pair representation** (r,c) | |
## 7. 🧬 3D Structure Prediction | |
- The structure module predicts the **3D protein structure**. | |
- **Confidence levels**: | |
- 🔵 *High confidence* | |
- 🟠 *Low confidence* | |
## 8. ♻️ Recycling (Three Times) | |
- The model **recycles** its output up to three times to refine the prediction. | |
## 9. 📚 Reference | |
**Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.* | |
🔗 [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2) | |
""" | |
st.sidebar.markdown(markdownPapers) | |
if st.session_state.should_rerun: | |
st.session_state.should_rerun = False | |
st.rerun() | |
if __name__=="__main__": | |
main() | |