File size: 6,446 Bytes
8bbd0a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from openai import OpenAI
import os
import base64
import requests
from prompts import prompts
from constants import JSON_SCHEMA_FOR_GPT

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

client = OpenAI(api_key=OPENAI_API_KEY)
model = "gpt-4o"
title = "Caimera Mood board Expert"


def createAssistant(instruction_prompt):
    instructions = instruction_prompt
    assistant = client.beta.assistants.create(
        name=title,
        instructions=instructions,
        model=model
    )
    return assistant.id


def saveFileOpenAI(location):
    with open(location, "rb") as f:
        file = client.files.create(file=f, purpose="vision")
    os.remove(location)
    return file.id


def startAssistantThread(file_id_enum, prompt_n, image_needed, json_mode_needed_or_not):
    if json_mode_needed_or_not == "yes":
        if image_needed == "yes":
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt_n
                        }
                    ],
                }
            ]
            for file_id in file_id_enum:
                messages[0]["content"].append({
                    "type": "image_file",
                    "image_file": {"file_id": file_id}
                })
        else:
            messages = [
                {
                    "role": "user",
                    "content": prompt_n}]
        thread = client.beta.threads.create(messages=messages)
    else:
        if image_needed == "yes":
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt_n
                        }
                    ],
                }
            ]
            for file_id in file_id_enum:
                messages[0]["content"].append({
                    "type": "image_file",
                    "image_file": {"file_id": file_id}
                })
        else:
            messages = [
                {
                    "role": "user",
                    "content": prompt_n}]
        thread = client.beta.threads.create(messages=messages)
    return thread.id


def runAssistant(thread_id, assistant_id):
    run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=assistant_id)
    return run.id


def checkRunStatus(thread_id, run_id):
    run = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id)
    return run.status


def retrieveThread(thread_id):
    thread_messages = client.beta.threads.messages.list(thread_id)
    list_messages = thread_messages.data
    thread_messages = []
    for message in list_messages:
        obj = {}
        obj['content'] = message.content[0].text.value
        obj['role'] = message.role
        thread_messages.append(obj)
    return thread_messages[::-1]


def addMessageToThread(thread_id, prompt_n):
    thread_message = client.beta.threads.messages.create(thread_id, role="user", content=prompt_n)


def create_chat_completion_request_open_ai_for_summary(prompt, json_mode, schema_name="",

                                                       json_schema="",

                                                       system_message="You are expert in Fashion "

                                                                      "Shoots"):
    import requests
    if json_mode == "No":
        url = "https://api.openai.com/v1/chat/completions"
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {OPENAI_API_KEY}"
        }
        data = {
            "model": "gpt-4o",
            "messages": [
                {
                    "role": "system",
                    "content": system_message
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ]
        }
        response = requests.post(url, headers=headers, json=data)
        json_response = response.json()
    else:
        url = "https://api.openai.com/v1/chat/completions"
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {OPENAI_API_KEY}"
        }
        data = {
            "model": "gpt-4o",
            "messages": [
                {
                    "role": "system",
                    "content": "You are expert in creating prompts for Fashion Shoots."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            "response_format": {"type": "json_schema", "json_schema": {"name": schema_name, "strict": True, "schema":
                json_schema}}
        }
        response = requests.post(url, headers=headers, json=data)
        json_response = response.json()
    print(json_response)
    return json_response["choices"][0]["message"]["content"]


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


def create_image_completion_request_gpt(image_path, prompt):
    base64_image = encode_image(image_path)
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    payload = {
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": prompt
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}"
                        }
                    }
                ]
            }
        ],
        "max_tokens": 300
    }
    response = requests.post("https://api.openai.com/v1/chat/completions",
                             headers=headers, json=payload)
    json_resp = response.json()
    return json_resp["choices"][0]["message"]["content"]