|
"""Some utility functions for the app.""" |
|
from base64 import b64encode |
|
from io import BytesIO |
|
|
|
from gtts import gTTS |
|
from mtranslate import translate |
|
from speech_recognition import AudioFile, Recognizer |
|
from transformers import (BlenderbotSmallForConditionalGeneration, |
|
BlenderbotSmallTokenizer) |
|
|
|
|
|
def stt(audio: object, language: str) -> str: |
|
"""Converts speech to text. |
|
|
|
Args: |
|
audio: record of user speech |
|
|
|
Returns: |
|
text (str): recognized speech of user |
|
""" |
|
|
|
|
|
r = Recognizer() |
|
|
|
with AudioFile(audio) as source: |
|
|
|
audio_data = r.record(source) |
|
|
|
text = r.recognize_google(audio_data, language=language) |
|
return text |
|
|
|
|
|
def to_en_translation(text: str, language: str) -> str: |
|
"""Translates text from specified language to English. |
|
|
|
Args: |
|
text (str): input text |
|
language (str): desired language |
|
|
|
Returns: |
|
str: translated text |
|
""" |
|
return translate(text, "en", language) |
|
|
|
|
|
def from_en_translation(text: str, language: str) -> str: |
|
"""Translates text from english to specified language. |
|
|
|
Args: |
|
text (str): input text |
|
language (str): desired language |
|
|
|
Returns: |
|
str: translated text |
|
""" |
|
return translate(text, language, "en") |
|
|
|
|
|
class TextGenerationPipeline: |
|
"""Pipeline for text generation of blenderbot model. |
|
|
|
Returns: |
|
str: generated text |
|
""" |
|
|
|
|
|
model_name = "facebook/blenderbot_small-90M" |
|
tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_name) |
|
model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_name) |
|
|
|
def __init__(self, **kwargs): |
|
"""Specififying text generation parameters. |
|
|
|
For example: max_length=100 which generates text shorter than |
|
100 tokens. Visit: |
|
https://huggingface.co/docs/transformers/main_classes/text_generation |
|
for more parameters |
|
""" |
|
self.__dict__.update(kwargs) |
|
|
|
def preprocess(self, text) -> str: |
|
"""Tokenizes input text. |
|
|
|
Args: |
|
text (str): user specified text |
|
|
|
Returns: |
|
torch.Tensor (obj): text representation as tensors |
|
""" |
|
return self.tokenizer(text, return_tensors="pt") |
|
|
|
def postprocess(self, outputs) -> str: |
|
"""Converts tensors into text. |
|
|
|
Args: |
|
outputs (torch.Tensor obj): model text generation output |
|
|
|
Returns: |
|
str: generated text |
|
""" |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
def __call__(self, text: str) -> str: |
|
"""Generates text from input text. |
|
|
|
Args: |
|
text (str): user specified text |
|
|
|
Returns: |
|
str: generated text |
|
""" |
|
tokenized_text = self.preprocess(text) |
|
output = self.model.generate(**tokenized_text, **self.__dict__) |
|
return self.postprocess(output) |
|
|
|
|
|
def tts(text: str, language: str) -> object: |
|
"""Converts text into audio object. |
|
|
|
Args: |
|
text (str): generated answer of bot |
|
|
|
Returns: |
|
object: text to speech object |
|
""" |
|
print("Audio output : " + text) |
|
return gTTS(text=text, lang=language, slow=False) |
|
|
|
|
|
def tts_to_bytesio(tts_object: object) -> bytes: |
|
"""Converts tts object to bytes. |
|
|
|
Args: |
|
tts_object (object): audio object obtained from gtts |
|
|
|
Returns: |
|
bytes: audio bytes |
|
""" |
|
bytes_object = BytesIO() |
|
tts_object.write_to_fp(bytes_object) |
|
bytes_object.seek(0) |
|
return bytes_object.getvalue() |
|
|
|
|
|
def html_audio_autoplay(bytes: bytes) -> object: |
|
"""Creates html object for autoplaying audio at gradio app. |
|
|
|
Args: |
|
bytes (bytes): audio bytes |
|
|
|
Returns: |
|
object: html object that provides audio autoplaying |
|
""" |
|
b64 = b64encode(bytes).decode() |
|
html = f""" |
|
<audio controls autoplay> |
|
<source src="data:audio/wav;base64,{b64}" type="audio/wav"> |
|
</audio> |
|
""" |
|
return html |