Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import html | |
import inspect | |
import re | |
import urllib.parse as ul | |
from typing import Callable, List, Optional, Tuple, Union | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusers.image_processor import PixArtImageProcessor, PipelineImageInput | |
from diffusers.models import AutoencoderKL, PixArtTransformer2DModel | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
BACKENDS_MAPPING, | |
deprecate, | |
is_bs4_available, | |
is_ftfy_available, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import ( | |
ASPECT_RATIO_256_BIN, | |
ASPECT_RATIO_512_BIN, | |
ASPECT_RATIO_1024_BIN, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, | |
generator: Optional[torch.Generator] = None, | |
sample_mode: str = "sample", | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_bs4_available(): | |
from bs4 import BeautifulSoup | |
if is_ftfy_available(): | |
import ftfy | |
def debug_print(message: str): | |
#print(message) | |
pass | |
ASPECT_RATIO_2048_BIN = { | |
"0.25": [1024.0, 4096.0], | |
"0.26": [1024.0, 3968.0], | |
"0.27": [1024.0, 3840.0], | |
"0.28": [1024.0, 3712.0], | |
"0.32": [1152.0, 3584.0], | |
"0.33": [1152.0, 3456.0], | |
"0.35": [1152.0, 3328.0], | |
"0.4": [1280.0, 3200.0], | |
"0.42": [1280.0, 3072.0], | |
"0.48": [1408.0, 2944.0], | |
"0.5": [1408.0, 2816.0], | |
"0.52": [1408.0, 2688.0], | |
"0.57": [1536.0, 2688.0], | |
"0.6": [1536.0, 2560.0], | |
"0.68": [1664.0, 2432.0], | |
"0.72": [1664.0, 2304.0], | |
"0.78": [1792.0, 2304.0], | |
"0.82": [1792.0, 2176.0], | |
"0.88": [1920.0, 2176.0], | |
"0.94": [1920.0, 2048.0], | |
"1.0": [2048.0, 2048.0], | |
"1.07": [2048.0, 1920.0], | |
"1.13": [2176.0, 1920.0], | |
"1.21": [2176.0, 1792.0], | |
"1.29": [2304.0, 1792.0], | |
"1.38": [2304.0, 1664.0], | |
"1.46": [2432.0, 1664.0], | |
"1.67": [2560.0, 1536.0], | |
"1.75": [2688.0, 1536.0], | |
"2.0": [2816.0, 1408.0], | |
"2.09": [2944.0, 1408.0], | |
"2.4": [3072.0, 1280.0], | |
"2.5": [3200.0, 1280.0], | |
"2.89": [3328.0, 1152.0], | |
"3.0": [3456.0, 1152.0], | |
"3.11": [3584.0, 1152.0], | |
"3.62": [3712.0, 1024.0], | |
"3.75": [3840.0, 1024.0], | |
"3.88": [3968.0, 1024.0], | |
"4.0": [4096.0, 1024.0], | |
} | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import PixArtSigmaPipeline | |
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too. | |
>>> pipe = PixArtSigmaPipeline.from_pretrained( | |
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16 | |
... ) | |
>>> # Enable memory optimizations. | |
>>> # pipe.enable_model_cpu_offload() | |
>>> prompt = "A small cactus with a happy face in the Sahara desert." | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError( | |
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
) | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class PixArtSigmaPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using PixArt-Sigma. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" | |
+ "#®•©™&@·º½¾¿¡§~" | |
+ r"\)" | |
+ r"\(" | |
+ r"\]" | |
+ r"\[" | |
+ r"\}" | |
+ r"\{" | |
+ r"\|" | |
+ "\\" | |
+ r"\/" | |
+ r"\*" | |
+ r"]{1,}" | |
) # noqa | |
_optional_components = ["tokenizer", "text_encoder"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
def __init__( | |
self, | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
vae: AutoencoderKL, | |
transformer: PixArtTransformer2DModel, | |
scheduler: KarrasDiffusionSchedulers, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = PixArtImageProcessor( | |
vae_scale_factor=self.vae_scale_factor | |
) | |
def get_timesteps( | |
self, num_inference_steps, strength, device, denoising_start=None | |
): | |
# get the original timestep using init_timestep | |
if denoising_start is None and strength is not None: | |
init_timestep = min( | |
int(num_inference_steps * strength), num_inference_steps | |
) | |
debug_print(f"Init timestep: {init_timestep}") | |
t_start = max(num_inference_steps - init_timestep, 0) | |
debug_print( | |
f"t_start = max({num_inference_steps} - {init_timestep}, 0) = {t_start}" | |
) | |
else: | |
debug_print(f"denoising_start: {denoising_start}") | |
t_start = 0 | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
# Strength is irrelevant if we directly request a timestep to start at; | |
# that is, strength is determined by the denoising_start instead. | |
if denoising_start is not None: | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (denoising_start * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() | |
if self.scheduler.order == 2 and num_inference_steps % 2 == 0: | |
# if the scheduler is a 2nd order scheduler we might have to do +1 | |
# because `num_inference_steps` might be even given that every timestep | |
# (except the highest one) is duplicated. If `num_inference_steps` is even it would | |
# mean that we cut the timesteps in the middle of the denoising step | |
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1 | |
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler | |
num_inference_steps = num_inference_steps + 1 | |
# because t_n+1 >= t_n, we slice the timesteps starting from the end | |
timesteps = timesteps[-num_inference_steps:] | |
return timesteps, num_inference_steps | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->300 | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: str = "", | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
clean_caption: bool = False, | |
max_sequence_length: int = 300, | |
**kwargs, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
PixArt-Alpha, this should be "". | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
string. | |
clean_caption (`bool`, defaults to `False`): | |
If `True`, the function will preprocess and clean the provided caption before encoding. | |
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. | |
""" | |
if "mask_feature" in kwargs: | |
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# See Section 3.1. of the paper. | |
max_length = max_sequence_length | |
if prompt_embeds is None: | |
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because T5 can only handle sequences up to" | |
f" {max_length} tokens: {removed_text}" | |
) | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.to(device) | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=prompt_attention_mask | |
) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.transformer is not None: | |
dtype = self.transformer.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens = ( | |
[negative_prompt] * batch_size | |
if isinstance(negative_prompt, str) | |
else negative_prompt | |
) | |
uncond_tokens = self._text_preprocessing( | |
uncond_tokens, clean_caption=clean_caption | |
) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
negative_prompt_attention_mask = uncond_input.attention_mask | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=negative_prompt_attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.view( | |
bs_embed, -1 | |
) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( | |
num_images_per_prompt, 1 | |
) | |
else: | |
negative_prompt_embeds = None | |
negative_prompt_attention_mask = None | |
return ( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
strength, | |
num_inference_steps, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
prompt_attention_mask=None, | |
negative_prompt_attention_mask=None, | |
): | |
if strength is None: | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
else: | |
if strength < 0 or strength > 1: | |
raise ValueError( | |
f"The value of strength should in [0.0, 1.0] but is {strength}" | |
) | |
if num_inference_steps is None: | |
raise ValueError("`num_inference_steps` cannot be None.") | |
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: | |
raise ValueError( | |
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" | |
f" {type(num_inference_steps)}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
prompt = None | |
if prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
negative_prompt = None | |
if prompt_embeds is not None and prompt_attention_mask is None: | |
raise ValueError( | |
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`." | |
) | |
if ( | |
negative_prompt_embeds is not None | |
and negative_prompt_attention_mask is None | |
): | |
raise ValueError( | |
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
raise ValueError( | |
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
f" {negative_prompt_attention_mask.shape}." | |
) | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
def _text_preprocessing(self, text, clean_caption=False): | |
if clean_caption and not is_bs4_available(): | |
logger.warning( | |
BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") | |
) | |
logger.warning("Setting `clean_caption` to False...") | |
clean_caption = False | |
if clean_caption and not is_ftfy_available(): | |
logger.warning( | |
BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") | |
) | |
logger.warning("Setting `clean_caption` to False...") | |
clean_caption = False | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
if clean_caption: | |
text = self._clean_caption(text) | |
text = self._clean_caption(text) | |
else: | |
text = text.lower().strip() | |
return text | |
return [process(t) for t in text] | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
def _clean_caption(self, caption): | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub( | |
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption | |
) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub( | |
self.bad_punct_regex, r" ", caption | |
) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = ftfy.fix_text(caption) | |
caption = html.unescape(html.unescape(caption)) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub( | |
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption | |
) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub( | |
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption | |
) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
_latents=None, | |
timestep=None, | |
add_noise=False, | |
image=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if _latents is not None: | |
init_latents = _latents.to(device) | |
elif image is None and _latents is None: | |
debug_print("Make random latents tensor") | |
init_latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
latents_mean = latents_std = None | |
if ( | |
hasattr(self.vae.config, "latents_mean") | |
and self.vae.config.latents_mean is not None | |
): | |
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) | |
if ( | |
hasattr(self.vae.config, "latents_std") | |
and self.vae.config.latents_std is not None | |
): | |
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) | |
if image is not None and hasattr(image, "shape") and image.shape[1] == 4: | |
debug_print("Received valid latent image input.") | |
init_latents = image | |
if init_latents is not None: | |
# scale the initial noise by the standard deviation required by the scheduler | |
debug_print(f"Scaling the initial noise by the std required by the scheduler.") | |
init_latents = init_latents * self.scheduler.init_noise_sigma | |
if image is not None and image.shape[1] < 4: | |
debug_print("Received RGB or similar image. Processing..") | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
image = image.float() | |
self.vae.to(dtype=torch.float32) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
retrieve_latents( | |
self.vae.encode(image[i : i + 1]), generator=generator[i] | |
) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
debug_print("Encode image to latents.") | |
init_latents = retrieve_latents( | |
self.vae.encode(image), generator=generator | |
) | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype) | |
debug_print("Set initial latents..") | |
init_latents = init_latents.to(dtype) | |
if latents_mean is not None and latents_std is not None: | |
debug_print("Scaling latents by mean/std") | |
latents_mean = latents_mean.to(device=device, dtype=dtype) | |
latents_std = latents_std.to(device=device, dtype=dtype) | |
init_latents = ( | |
(init_latents - latents_mean) | |
* self.vae.config.scaling_factor | |
/ latents_std | |
) | |
else: | |
debug_print("Scaling latents only by scaling_factor") | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] == 0 | |
): | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat( | |
[init_latents] * additional_image_per_prompt, dim=0 | |
) | |
elif ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] != 0 | |
): | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
if ( | |
add_noise | |
and timestep is not None | |
and (_latents is not None or image is not None) | |
): | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
debug_print(f"Adding noise to tensor for timestep: {timestep}") | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
return init_latents | |
def denoising_start(self): | |
return self._denoising_start | |
def denoising_end(self): | |
return self._denoising_end | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: str = "", | |
strength: float = None, | |
num_inference_steps: int = 20, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
denoising_start: Optional[float] = None, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 4.5, | |
num_images_per_prompt: Optional[int] = 1, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
image: Optional[PipelineImageInput] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
callback_steps: int = 1, | |
clean_caption: bool = True, | |
use_resolution_binning: bool = True, | |
max_sequence_length: int = 300, | |
**kwargs, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
strength (`float`, *optional*, defaults to 0.3): | |
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | |
will be used as a starting point, adding more noise to it the larger the `strength`. The number of | |
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | |
be maximum and the denoising process will run for the full number of iterations specified in | |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of | |
`denoising_start` being declared as an integer, the value of `strength` will be ignored. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
denoising_start (`float`, *optional*): | |
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | |
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | |
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | |
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | |
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image | |
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 4.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
Pre-generated attention mask for negative text embeddings. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
use_resolution_binning (`bool` defaults to `True`): | |
If set to `True`, the requested height and width are first mapped to the closest resolutions using | |
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to | |
the requested resolution. Useful for generating non-square images. | |
max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# 1. Check inputs. Raise error if not correct | |
height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
if use_resolution_binning: | |
if self.transformer.config.sample_size == 256: | |
aspect_ratio_bin = ASPECT_RATIO_2048_BIN | |
elif self.transformer.config.sample_size == 128: | |
aspect_ratio_bin = ASPECT_RATIO_1024_BIN | |
elif self.transformer.config.sample_size == 64: | |
aspect_ratio_bin = ASPECT_RATIO_512_BIN | |
elif self.transformer.config.sample_size == 32: | |
aspect_ratio_bin = ASPECT_RATIO_256_BIN | |
else: | |
raise ValueError("Invalid sample size") | |
orig_height, orig_width = height, width | |
height, width = self.image_processor.classify_height_width_bin( | |
height, width, ratios=aspect_ratio_bin | |
) | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
strength, | |
num_inference_steps, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
self._denoising_start = denoising_start | |
self._num_timesteps = num_inference_steps | |
self._denoising_end = denoising_end | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
clean_caption=clean_caption, | |
max_sequence_length=max_sequence_length, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
prompt_attention_mask = torch.cat( | |
[negative_prompt_attention_mask, prompt_attention_mask], dim=0 | |
) | |
# 4. Prepare timesteps | |
def denoising_value_valid(dnv): | |
return isinstance(dnv, float) and 0 < dnv < 1 | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
# 5. Prepare latents. | |
if image is not None: | |
image = self.image_processor.preprocess(image) | |
image = image.to(device=self.vae.device, dtype=self.vae.dtype) | |
latent_channels = self.transformer.config.in_channels | |
latent_timestep = None | |
if ( | |
denoising_end is not None | |
or denoising_start is not None | |
or strength is not None | |
): | |
timesteps, num_inference_steps = self.get_timesteps( | |
num_inference_steps, | |
strength, | |
device, | |
denoising_start=( | |
self.denoising_start | |
if denoising_value_valid(self.denoising_start) | |
else None | |
), | |
) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
if latents is not None: | |
height, width = latents.shape[-2:] | |
height = height * self.vae_scale_factor | |
width = width * self.vae_scale_factor | |
add_noise = ( | |
True | |
if ( | |
self.denoising_start is None | |
and (image is not None or latents is not None) | |
) | |
else False | |
) | |
debug_print(f"Add_noise: {add_noise}") | |
if latents is None: | |
debug_print("Prepare latents..") | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
latent_channels, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
timestep=latent_timestep, | |
add_noise=add_noise, | |
image=image, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Prepare micro-conditions. | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
# 7. Denoising loop | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
if ( | |
self.denoising_end is not None | |
and self.denoising_start is not None | |
and denoising_value_valid(self.denoising_end) | |
and denoising_value_valid(self.denoising_start) | |
and self.denoising_start >= self.denoising_end | |
): | |
raise ValueError( | |
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " | |
+ f" {self.denoising_end} when using type float." | |
) | |
if self.denoising_start is not None: | |
if denoising_value_valid(self.denoising_start): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (denoising_start * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = ( | |
(timesteps < discrete_timestep_cutoff).sum().item() | |
) | |
debug_print( | |
f"Beginning inference for stage2 with {num_inference_steps} steps." | |
) | |
else: | |
raise ValueError( | |
f"`denoising_start` must be a float between 0 and 1: {denoising_start}" | |
) | |
if self.denoising_end is not None: | |
if denoising_value_valid(self.denoising_end): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- ( | |
self.denoising_end | |
* self.scheduler.config.num_train_timesteps | |
) | |
) | |
) | |
num_inference_steps = len( | |
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
) | |
debug_print( | |
f"Beginning inference for stage1 with {num_inference_steps} steps." | |
) | |
timesteps = timesteps[:num_inference_steps] | |
else: | |
raise ValueError( | |
f"`denoising_end` must be a float between 0 and 1: {denoising_end}" | |
) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor( | |
[current_timestep], | |
dtype=dtype, | |
device=latent_model_input.device, | |
) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to( | |
latent_model_input.device | |
) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
latent_model_input.to( | |
device=self.transformer.device, dtype=self.transformer.dtype | |
), | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
timestep=current_timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# learned sigma | |
if self.transformer.config.out_channels // 2 == latent_channels: | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
else: | |
noise_pred = noise_pred | |
# compute previous image: x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
image = self.vae.decode( | |
latents.to(device=self.vae.device, dtype=self.vae.dtype) | |
/ self.vae.config.scaling_factor, | |
return_dict=False, | |
)[0] | |
if use_resolution_binning: | |
image = self.image_processor.resize_and_crop_tensor( | |
image, orig_width, orig_height | |
) | |
else: | |
image = latents | |
if not output_type == "latent": | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |