yonishafir's picture
Create app.py
2e398f7 verified
raw
history blame
16.3 kB
import os
import random
import gradio as gr
import cv2
import torch
import numpy as np
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
# from diffusers.image_processor import IPAdapterMaskProcessor
from insightface.app import FaceAnalysis
# import sys
# import glob
# import os
import io
import spaces
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
import pandas as pd
import json
import requests
from PIL import Image
from io import BytesIO
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
"""
Process an image based on a bounding box, cropping and resizing as necessary.
Parameters:
- input_image: PIL Image object.
- bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates.
Returns:
- A processed image cropped and resized to 1024x1024 if the bounding box is valid,
or None if the bounding box does not meet the required size criteria.
"""
# Constants
target_size = 1024
# min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop
# Extract bounding box coordinates
x1, y1, x2, y2 = bbox_xyxy
bbox_w = x2 - x1
bbox_h = y2 - y1
# Calculate the area of the bounding box
bbox_area = bbox_w * bbox_h
# Start with the smallest square crop that allows bbox to be at least 20% of the crop area
crop_size = max(bbox_w, bbox_h)
initial_crop_area = crop_size * crop_size
while (bbox_area / initial_crop_area) < min_bbox_ratio:
crop_size += 10 # Gradually increase until bbox is at least 20% of the area
initial_crop_area = crop_size * crop_size
# Once the minimum condition is satisfied, try to expand the crop further
max_possible_crop_size = min(input_image.width, input_image.height)
while crop_size < max_possible_crop_size:
# Calculate a potential new area
new_crop_size = crop_size + 10
new_crop_area = new_crop_size * new_crop_size
if (bbox_area / new_crop_area) < min_bbox_ratio:
break # Stop if expanding further violates the 20% rule
crop_size = new_crop_size
# Determine the center of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate the crop coordinates centered around the bounding box
crop_x1 = max(0, center_x - crop_size // 2)
crop_y1 = max(0, center_y - crop_size // 2)
crop_x2 = min(input_image.width, crop_x1 + crop_size)
crop_y2 = min(input_image.height, crop_y1 + crop_size)
# Ensure the crop is square, adjust if it goes out of image bounds
if crop_x2 - crop_x1 != crop_y2 - crop_y1:
side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1)
crop_x2 = crop_x1 + side_length
crop_y2 = crop_y1 + side_length
# Crop the image
cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2))
# Resize the cropped image to 1024x1024
resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS)
return resized_image
def calc_emb_cropped(image, app):
face_image = image.copy()
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = face_info[0]
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=0.2)
return cropped_face_image
def process_benchmark_csv(banchmark_csv_path):
# Reading the first CSV file into a DataFrame
df = pd.read_csv(banchmark_csv_path)
# Drop any unnamed columns
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
# Drop columns with all NaN values
df.dropna(axis=1, how='all', inplace=True)
# Drop rows with all NaN values
df.dropna(axis=0, how='all', inplace=True)
df = df.loc[df['High resolution'] == 1]
df.reset_index(drop=True, inplace=True)
return df
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
if w_bilateral:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
else:
image = np.array(image)
image = cv2.Canny(image, min_val, max_val)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# Load face detection and recognition package
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
base_dir = "./instantID_ckpt/checkpoint_174000"
face_adapter = f'{base_dir}/pytorch_model.bin'
controlnet_path = f'{base_dir}/controlnet'
base_model_path = f'briaai/BRIA-2.3'
resolution = 1024
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
torch_dtype=torch.float16)
controlnet = [controlnet_lnmks, controlnet_canny]
device = "cuda" if torch.cuda.is_available() else "cpu"
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
'/home/ubuntu/BRIA-2.3-InstantID/ip_adapter/image_encoder',
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
image_encoder=image_encoder # For compatibility issues - needs to be there
)
pipe = pipe.to(device)
use_native_ip_adapter = True
pipe.use_native_ip_adapter=use_native_ip_adapter
pipe.load_ip_adapter_instantid(face_adapter)
clip_embeds=None
Loras_dict = {
"":"",
"Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
"Avatar_internlm": "2d anime sketch avatar of",
# "Tomer_Hanuka_V3": "Fluid lines",
"Storyboards": "Illustration style for storyboarding",
"3D_illustration": "3D object illustration, abstract",
# "beetl_general_death_style_v2": "a pale, dead, unnatural color face with dark circles around the eyes",
"Characters": "gaming vector Art"
}
lora_names = Loras_dict.keys()
lora_base_path = "./LoRAs"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 99999999)
return seed
@spaces.GPU
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale=0.8, kps_scale=0.6, canny_scale=0.4, lora_name="", lora_scale=0.7, progress=gr.Progress(track_tqdm=True)):
if image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
# img = np.array(Image.open(image_path))[:,:,::-1]
img = Image.open(image_path)
face_image_orig = img #Image.open(BytesIO(response.content))
face_image_cropped = calc_emb_cropped(face_image_orig, app)
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
# face_image_padded = resize_img(face_image_cropped, max_side=resolution, min_side=resolution, pad_to_max_side=True)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
if canny_scale>0.0:
# Convert PIL image to a file-like object
image_file = io.BytesIO()
face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG')
image_file.seek(0) # Move to the start of the BytesIO stream
url = "https://engine.prod.bria-api.com/v1/background/remove"
payload = {}
files = [
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
]
headers = {
'api_token': 'a10d6386dd6a11ebba800242ac130004'
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)
print(response.text)
response_json = json.loads(response.content.decode('utf-8'))
img = requests.get(response_json['result_url'])
processed_image = Image.open(io.BytesIO(img.content))
# Assuming `processed_image` is the RGBA image returned
if processed_image.mode == 'RGBA':
# Create a white background image
white_background = Image.new("RGB", processed_image.size, (255, 255, 255))
# Composite the RGBA image over the white background
face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB')
else:
face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
generator = torch.Generator(device=device).manual_seed(seed)
if lora_name != "":
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale)
pipe.enable_lora()
lora_prefix = Loras_dict[lora_name]
prompt = f"{lora_prefix} {prompt}"
print("Start inference...")
images = pipe(
prompt = prompt,
negative_prompt = default_negative_prompt,
image_embeds = face_emb,
image = [face_kps, canny_img] if canny_scale>0.0 else face_kps,
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
ip_adapter_scale = ip_adapter_scale,
num_inference_steps = num_steps,
guidance_scale = guidance_scale,
generator = generator,
visual_prompt_embds = clip_embeds,
cross_attention_kwargs = None,
num_images_per_prompt=num_images,
).images #[0]
if lora_name != "":
pipe.disable_lora()
pipe.unfuse_lora()
pipe.unload_lora_weights()
return images
### Description
title = r"""
<h1>Bria-2.3 ID preservation</h1>
"""
description = r"""
<b>🤗 Gradio demo</b> for bria ID preservation.<br>
Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Click <b>Submit</b> to generate new images of the subject.
"""
Footer = r"""
Enjoy
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
# Textbox for entering a prompt
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here",
info="Describe what you want to generate or modify in the image."
)
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
submit = gr.Button("Submit", variant="primary")
# use_lcm = gr.Checkbox(
# label="Use LCM-LoRA to accelerate sampling", value=False,
# info="Reduces sampling steps significantly, but may decrease quality.",
# )
with gr.Accordion(open=False, label="Advanced Options"):
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=3,
step=1,
value=1,
)
ip_adapter_scale = gr.Slider(
label="ip adapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
kps_scale = gr.Slider(
label="kps control scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.6,
)
canny_scale = gr.Slider(
label="canny control scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=99999999,
step=1,
value=0,
)
seed = gr.Slider(
label="lora_scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name],
outputs=[gallery]
)
# use_lcm.input(
# fn=toggle_lcm_ui,
# inputs=[use_lcm],
# outputs=[num_steps, guidance_scale],
# queue=False,
# )
# gr.Examples(
# examples=get_example(),
# inputs=[img_file],
# run_on_click=True,
# fn=run_example,
# outputs=[gallery],
# )
gr.Markdown(Footer)
demo.launch()