Spaces:
Running
on
Zero
Running
on
Zero
yonishafir
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from transformers import CLIPVisionModelWithProjection
|
12 |
+
from diffusers.utils import load_image
|
13 |
+
from diffusers.models import ControlNetModel
|
14 |
+
# from diffusers.image_processor import IPAdapterMaskProcessor
|
15 |
+
from insightface.app import FaceAnalysis
|
16 |
+
# import sys
|
17 |
+
# import glob
|
18 |
+
# import os
|
19 |
+
import io
|
20 |
+
import spaces
|
21 |
+
|
22 |
+
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
23 |
+
|
24 |
+
import pandas as pd
|
25 |
+
import json
|
26 |
+
import requests
|
27 |
+
from PIL import Image
|
28 |
+
from io import BytesIO
|
29 |
+
|
30 |
+
|
31 |
+
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
32 |
+
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
33 |
+
|
34 |
+
w, h = input_image.size
|
35 |
+
if size is not None:
|
36 |
+
w_resize_new, h_resize_new = size
|
37 |
+
else:
|
38 |
+
ratio = min_side / min(h, w)
|
39 |
+
w, h = round(ratio*w), round(ratio*h)
|
40 |
+
ratio = max_side / max(h, w)
|
41 |
+
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
42 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
43 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
44 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
45 |
+
|
46 |
+
if pad_to_max_side:
|
47 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
48 |
+
offset_x = (max_side - w_resize_new) // 2
|
49 |
+
offset_y = (max_side - h_resize_new) // 2
|
50 |
+
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
51 |
+
input_image = Image.fromarray(res)
|
52 |
+
return input_image
|
53 |
+
|
54 |
+
def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
|
55 |
+
"""
|
56 |
+
Process an image based on a bounding box, cropping and resizing as necessary.
|
57 |
+
|
58 |
+
Parameters:
|
59 |
+
- input_image: PIL Image object.
|
60 |
+
- bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
- A processed image cropped and resized to 1024x1024 if the bounding box is valid,
|
64 |
+
or None if the bounding box does not meet the required size criteria.
|
65 |
+
"""
|
66 |
+
# Constants
|
67 |
+
target_size = 1024
|
68 |
+
# min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop
|
69 |
+
|
70 |
+
# Extract bounding box coordinates
|
71 |
+
x1, y1, x2, y2 = bbox_xyxy
|
72 |
+
bbox_w = x2 - x1
|
73 |
+
bbox_h = y2 - y1
|
74 |
+
|
75 |
+
# Calculate the area of the bounding box
|
76 |
+
bbox_area = bbox_w * bbox_h
|
77 |
+
|
78 |
+
# Start with the smallest square crop that allows bbox to be at least 20% of the crop area
|
79 |
+
crop_size = max(bbox_w, bbox_h)
|
80 |
+
initial_crop_area = crop_size * crop_size
|
81 |
+
while (bbox_area / initial_crop_area) < min_bbox_ratio:
|
82 |
+
crop_size += 10 # Gradually increase until bbox is at least 20% of the area
|
83 |
+
initial_crop_area = crop_size * crop_size
|
84 |
+
|
85 |
+
# Once the minimum condition is satisfied, try to expand the crop further
|
86 |
+
max_possible_crop_size = min(input_image.width, input_image.height)
|
87 |
+
while crop_size < max_possible_crop_size:
|
88 |
+
# Calculate a potential new area
|
89 |
+
new_crop_size = crop_size + 10
|
90 |
+
new_crop_area = new_crop_size * new_crop_size
|
91 |
+
if (bbox_area / new_crop_area) < min_bbox_ratio:
|
92 |
+
break # Stop if expanding further violates the 20% rule
|
93 |
+
crop_size = new_crop_size
|
94 |
+
|
95 |
+
# Determine the center of the bounding box
|
96 |
+
center_x = (x1 + x2) // 2
|
97 |
+
center_y = (y1 + y2) // 2
|
98 |
+
|
99 |
+
# Calculate the crop coordinates centered around the bounding box
|
100 |
+
crop_x1 = max(0, center_x - crop_size // 2)
|
101 |
+
crop_y1 = max(0, center_y - crop_size // 2)
|
102 |
+
crop_x2 = min(input_image.width, crop_x1 + crop_size)
|
103 |
+
crop_y2 = min(input_image.height, crop_y1 + crop_size)
|
104 |
+
|
105 |
+
# Ensure the crop is square, adjust if it goes out of image bounds
|
106 |
+
if crop_x2 - crop_x1 != crop_y2 - crop_y1:
|
107 |
+
side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1)
|
108 |
+
crop_x2 = crop_x1 + side_length
|
109 |
+
crop_y2 = crop_y1 + side_length
|
110 |
+
|
111 |
+
# Crop the image
|
112 |
+
cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2))
|
113 |
+
|
114 |
+
# Resize the cropped image to 1024x1024
|
115 |
+
resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS)
|
116 |
+
|
117 |
+
return resized_image
|
118 |
+
|
119 |
+
def calc_emb_cropped(image, app):
|
120 |
+
face_image = image.copy()
|
121 |
+
|
122 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
123 |
+
|
124 |
+
face_info = face_info[0]
|
125 |
+
|
126 |
+
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=0.2)
|
127 |
+
|
128 |
+
return cropped_face_image
|
129 |
+
|
130 |
+
def process_benchmark_csv(banchmark_csv_path):
|
131 |
+
# Reading the first CSV file into a DataFrame
|
132 |
+
df = pd.read_csv(banchmark_csv_path)
|
133 |
+
|
134 |
+
# Drop any unnamed columns
|
135 |
+
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
136 |
+
|
137 |
+
# Drop columns with all NaN values
|
138 |
+
df.dropna(axis=1, how='all', inplace=True)
|
139 |
+
|
140 |
+
# Drop rows with all NaN values
|
141 |
+
df.dropna(axis=0, how='all', inplace=True)
|
142 |
+
|
143 |
+
df = df.loc[df['High resolution'] == 1]
|
144 |
+
|
145 |
+
df.reset_index(drop=True, inplace=True)
|
146 |
+
|
147 |
+
return df
|
148 |
+
|
149 |
+
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
|
150 |
+
if w_bilateral:
|
151 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
152 |
+
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
|
153 |
+
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
|
154 |
+
else:
|
155 |
+
image = np.array(image)
|
156 |
+
image = cv2.Canny(image, min_val, max_val)
|
157 |
+
image = image[:, :, None]
|
158 |
+
image = np.concatenate([image, image, image], axis=2)
|
159 |
+
image = Image.fromarray(image)
|
160 |
+
return image
|
161 |
+
|
162 |
+
|
163 |
+
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
164 |
+
|
165 |
+
# Load face detection and recognition package
|
166 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
|
167 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
168 |
+
|
169 |
+
base_dir = "./instantID_ckpt/checkpoint_174000"
|
170 |
+
face_adapter = f'{base_dir}/pytorch_model.bin'
|
171 |
+
controlnet_path = f'{base_dir}/controlnet'
|
172 |
+
base_model_path = f'briaai/BRIA-2.3'
|
173 |
+
resolution = 1024
|
174 |
+
|
175 |
+
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
176 |
+
|
177 |
+
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
|
178 |
+
torch_dtype=torch.float16)
|
179 |
+
|
180 |
+
controlnet = [controlnet_lnmks, controlnet_canny]
|
181 |
+
|
182 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
183 |
+
|
184 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
185 |
+
'/home/ubuntu/BRIA-2.3-InstantID/ip_adapter/image_encoder',
|
186 |
+
torch_dtype=torch.float16,
|
187 |
+
)
|
188 |
+
|
189 |
+
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
190 |
+
base_model_path,
|
191 |
+
controlnet=controlnet,
|
192 |
+
torch_dtype=torch.float16,
|
193 |
+
image_encoder=image_encoder # For compatibility issues - needs to be there
|
194 |
+
)
|
195 |
+
|
196 |
+
pipe = pipe.to(device)
|
197 |
+
|
198 |
+
use_native_ip_adapter = True
|
199 |
+
pipe.use_native_ip_adapter=use_native_ip_adapter
|
200 |
+
|
201 |
+
pipe.load_ip_adapter_instantid(face_adapter)
|
202 |
+
|
203 |
+
clip_embeds=None
|
204 |
+
|
205 |
+
|
206 |
+
Loras_dict = {
|
207 |
+
"":"",
|
208 |
+
"Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
|
209 |
+
"Avatar_internlm": "2d anime sketch avatar of",
|
210 |
+
# "Tomer_Hanuka_V3": "Fluid lines",
|
211 |
+
"Storyboards": "Illustration style for storyboarding",
|
212 |
+
"3D_illustration": "3D object illustration, abstract",
|
213 |
+
# "beetl_general_death_style_v2": "a pale, dead, unnatural color face with dark circles around the eyes",
|
214 |
+
"Characters": "gaming vector Art"
|
215 |
+
}
|
216 |
+
|
217 |
+
lora_names = Loras_dict.keys()
|
218 |
+
|
219 |
+
lora_base_path = "./LoRAs"
|
220 |
+
|
221 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
222 |
+
if randomize_seed:
|
223 |
+
seed = random.randint(0, 99999999)
|
224 |
+
return seed
|
225 |
+
|
226 |
+
|
227 |
+
@spaces.GPU
|
228 |
+
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale=0.8, kps_scale=0.6, canny_scale=0.4, lora_name="", lora_scale=0.7, progress=gr.Progress(track_tqdm=True)):
|
229 |
+
if image_path is None:
|
230 |
+
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
231 |
+
|
232 |
+
# img = np.array(Image.open(image_path))[:,:,::-1]
|
233 |
+
img = Image.open(image_path)
|
234 |
+
|
235 |
+
face_image_orig = img #Image.open(BytesIO(response.content))
|
236 |
+
face_image_cropped = calc_emb_cropped(face_image_orig, app)
|
237 |
+
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
|
238 |
+
# face_image_padded = resize_img(face_image_cropped, max_side=resolution, min_side=resolution, pad_to_max_side=True)
|
239 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
240 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
241 |
+
face_emb = face_info['embedding']
|
242 |
+
face_kps = draw_kps(face_image, face_info['kps'])
|
243 |
+
|
244 |
+
if canny_scale>0.0:
|
245 |
+
# Convert PIL image to a file-like object
|
246 |
+
image_file = io.BytesIO()
|
247 |
+
face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG')
|
248 |
+
image_file.seek(0) # Move to the start of the BytesIO stream
|
249 |
+
|
250 |
+
url = "https://engine.prod.bria-api.com/v1/background/remove"
|
251 |
+
|
252 |
+
payload = {}
|
253 |
+
files = [
|
254 |
+
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
|
255 |
+
]
|
256 |
+
headers = {
|
257 |
+
'api_token': 'a10d6386dd6a11ebba800242ac130004'
|
258 |
+
}
|
259 |
+
|
260 |
+
response = requests.request("POST", url, headers=headers, data=payload, files=files)
|
261 |
+
|
262 |
+
print(response.text)
|
263 |
+
|
264 |
+
response_json = json.loads(response.content.decode('utf-8'))
|
265 |
+
|
266 |
+
img = requests.get(response_json['result_url'])
|
267 |
+
|
268 |
+
processed_image = Image.open(io.BytesIO(img.content))
|
269 |
+
|
270 |
+
# Assuming `processed_image` is the RGBA image returned
|
271 |
+
if processed_image.mode == 'RGBA':
|
272 |
+
# Create a white background image
|
273 |
+
white_background = Image.new("RGB", processed_image.size, (255, 255, 255))
|
274 |
+
# Composite the RGBA image over the white background
|
275 |
+
face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB')
|
276 |
+
else:
|
277 |
+
face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct
|
278 |
+
|
279 |
+
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
|
280 |
+
|
281 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
282 |
+
|
283 |
+
if lora_name != "":
|
284 |
+
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
285 |
+
pipe.load_lora_weights(lora_path)
|
286 |
+
pipe.fuse_lora(lora_scale)
|
287 |
+
pipe.enable_lora()
|
288 |
+
|
289 |
+
lora_prefix = Loras_dict[lora_name]
|
290 |
+
|
291 |
+
prompt = f"{lora_prefix} {prompt}"
|
292 |
+
|
293 |
+
|
294 |
+
print("Start inference...")
|
295 |
+
images = pipe(
|
296 |
+
prompt = prompt,
|
297 |
+
negative_prompt = default_negative_prompt,
|
298 |
+
image_embeds = face_emb,
|
299 |
+
image = [face_kps, canny_img] if canny_scale>0.0 else face_kps,
|
300 |
+
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
|
301 |
+
control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
|
302 |
+
ip_adapter_scale = ip_adapter_scale,
|
303 |
+
num_inference_steps = num_steps,
|
304 |
+
guidance_scale = guidance_scale,
|
305 |
+
generator = generator,
|
306 |
+
visual_prompt_embds = clip_embeds,
|
307 |
+
cross_attention_kwargs = None,
|
308 |
+
num_images_per_prompt=num_images,
|
309 |
+
).images #[0]
|
310 |
+
|
311 |
+
if lora_name != "":
|
312 |
+
pipe.disable_lora()
|
313 |
+
pipe.unfuse_lora()
|
314 |
+
pipe.unload_lora_weights()
|
315 |
+
|
316 |
+
return images
|
317 |
+
|
318 |
+
### Description
|
319 |
+
title = r"""
|
320 |
+
<h1>Bria-2.3 ID preservation</h1>
|
321 |
+
"""
|
322 |
+
|
323 |
+
description = r"""
|
324 |
+
<b>🤗 Gradio demo</b> for bria ID preservation.<br>
|
325 |
+
|
326 |
+
Steps:<br>
|
327 |
+
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
|
328 |
+
2. Click <b>Submit</b> to generate new images of the subject.
|
329 |
+
"""
|
330 |
+
|
331 |
+
Footer = r"""
|
332 |
+
Enjoy
|
333 |
+
"""
|
334 |
+
|
335 |
+
css = '''
|
336 |
+
.gradio-container {width: 85% !important}
|
337 |
+
'''
|
338 |
+
with gr.Blocks(css=css) as demo:
|
339 |
+
|
340 |
+
# description
|
341 |
+
gr.Markdown(title)
|
342 |
+
gr.Markdown(description)
|
343 |
+
|
344 |
+
with gr.Row():
|
345 |
+
with gr.Column():
|
346 |
+
|
347 |
+
# upload face image
|
348 |
+
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
|
349 |
+
|
350 |
+
# Textbox for entering a prompt
|
351 |
+
prompt = gr.Textbox(
|
352 |
+
label="Prompt",
|
353 |
+
placeholder="Enter your prompt here",
|
354 |
+
info="Describe what you want to generate or modify in the image."
|
355 |
+
)
|
356 |
+
|
357 |
+
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
358 |
+
|
359 |
+
submit = gr.Button("Submit", variant="primary")
|
360 |
+
|
361 |
+
# use_lcm = gr.Checkbox(
|
362 |
+
# label="Use LCM-LoRA to accelerate sampling", value=False,
|
363 |
+
# info="Reduces sampling steps significantly, but may decrease quality.",
|
364 |
+
# )
|
365 |
+
|
366 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
367 |
+
num_steps = gr.Slider(
|
368 |
+
label="Number of sample steps",
|
369 |
+
minimum=1,
|
370 |
+
maximum=100,
|
371 |
+
step=1,
|
372 |
+
value=30,
|
373 |
+
)
|
374 |
+
guidance_scale = gr.Slider(
|
375 |
+
label="Guidance scale",
|
376 |
+
minimum=0.1,
|
377 |
+
maximum=10.0,
|
378 |
+
step=0.1,
|
379 |
+
value=5.0,
|
380 |
+
)
|
381 |
+
num_images = gr.Slider(
|
382 |
+
label="Number of output images",
|
383 |
+
minimum=1,
|
384 |
+
maximum=3,
|
385 |
+
step=1,
|
386 |
+
value=1,
|
387 |
+
)
|
388 |
+
ip_adapter_scale = gr.Slider(
|
389 |
+
label="ip adapter scale",
|
390 |
+
minimum=0.0,
|
391 |
+
maximum=1.0,
|
392 |
+
step=0.01,
|
393 |
+
value=0.8,
|
394 |
+
)
|
395 |
+
kps_scale = gr.Slider(
|
396 |
+
label="kps control scale",
|
397 |
+
minimum=0.0,
|
398 |
+
maximum=1.0,
|
399 |
+
step=0.01,
|
400 |
+
value=0.6,
|
401 |
+
)
|
402 |
+
canny_scale = gr.Slider(
|
403 |
+
label="canny control scale",
|
404 |
+
minimum=0.0,
|
405 |
+
maximum=1.0,
|
406 |
+
step=0.01,
|
407 |
+
value=0.4,
|
408 |
+
)
|
409 |
+
seed = gr.Slider(
|
410 |
+
label="Seed",
|
411 |
+
minimum=0,
|
412 |
+
maximum=99999999,
|
413 |
+
step=1,
|
414 |
+
value=0,
|
415 |
+
)
|
416 |
+
seed = gr.Slider(
|
417 |
+
label="lora_scale",
|
418 |
+
minimum=0.0,
|
419 |
+
maximum=1.0,
|
420 |
+
step=0.01,
|
421 |
+
value=0.7,
|
422 |
+
)
|
423 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
424 |
+
|
425 |
+
with gr.Column():
|
426 |
+
gallery = gr.Gallery(label="Generated Images")
|
427 |
+
|
428 |
+
submit.click(
|
429 |
+
fn=randomize_seed_fn,
|
430 |
+
inputs=[seed, randomize_seed],
|
431 |
+
outputs=seed,
|
432 |
+
queue=False,
|
433 |
+
api_name=False,
|
434 |
+
).then(
|
435 |
+
fn=generate_image,
|
436 |
+
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name],
|
437 |
+
outputs=[gallery]
|
438 |
+
)
|
439 |
+
|
440 |
+
# use_lcm.input(
|
441 |
+
# fn=toggle_lcm_ui,
|
442 |
+
# inputs=[use_lcm],
|
443 |
+
# outputs=[num_steps, guidance_scale],
|
444 |
+
# queue=False,
|
445 |
+
# )
|
446 |
+
|
447 |
+
# gr.Examples(
|
448 |
+
# examples=get_example(),
|
449 |
+
# inputs=[img_file],
|
450 |
+
# run_on_click=True,
|
451 |
+
# fn=run_example,
|
452 |
+
# outputs=[gallery],
|
453 |
+
# )
|
454 |
+
|
455 |
+
gr.Markdown(Footer)
|
456 |
+
|
457 |
+
demo.launch()
|