bushra1dajam's picture
Create app.py
59078f3 verified
raw
history blame contribute delete
878 Bytes
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet50
from PIL import Image
import gradio as gr
# Load the pre-trained model (ResNet50)
model = resnet50(pretrained=True)
model.eval()
# Define the transforms
transform = transforms.Compose([
transforms.Resize((224, 224)), # Resize to the size expected by ResNet
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Define the prediction function
def predict(image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
image = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs, 1)
return predicted.item()
# Create and launch the Gradio interface
iface = gr.Interface(fn=predict, inputs="image", outputs="label")
iface.launch()