File size: 1,549 Bytes
a631fd0 d0661bd d2c8f3c 0527fa6 854dede 0527fa6 d2c8f3c bda553e d2c8f3c bda553e 9ee810a d2c8f3c 0527fa6 bda553e 0527fa6 d2c8f3c 10118ca 9ee810a 0527fa6 a631fd0 f3a6502 0527fa6 10118ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
import pandas as pd
import requests
import folium
from streamlit_folium import folium_static
def get_data():
url = "https://opendata.bordeaux-metropole.fr/api/records/1.0/search/?dataset=met_etablissement_rse&q=&rows=100"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
records = data.get("records", [])
return [record["fields"] for record in records], data.get("nhits", 0)
else:
return [], 0
def display_organisations_engagees():
st.markdown("## OPEN DATA RSE")
st.markdown("### Découvrez les organisations engagées RSE de la métropole de Bordeaux")
data, _ = get_data()
if data:
df = pd.DataFrame(data)
df = df.rename(columns={
"nom_courant_denomination": "Nom",
"commune": "Commune",
"libelle_section_naf": "Section NAF",
"tranche_effectif_entreprise": "Effectif",
"action_rse": "Action RSE"
})
df = df[["Nom", "Commune", "Section NAF", "Effectif", "Action RSE"]]
st.dataframe(df, width=None, height=None)
def main():
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a page", ["Home", "Organisations Engagées"])
if app_mode == "Home":
st.header("Welcome to the RSE Data Explorer!")
st.markdown("Please select a page on the left.")
elif app_mode == "Organisations Engagées":
display_organisations_engagees()
if __name__ == "__main__":
main()
|