Spaces:
Runtime error
Runtime error
import os, json, requests, runpod | |
import torch | |
import random | |
import comfy | |
from comfy.sd import load_checkpoint_guess_config | |
import nodes | |
from nodes import NODE_CLASS_MAPPINGS | |
from comfy_extras import nodes_post_processing, nodes_differential_diffusion, nodes_upscale_model | |
import numpy as np | |
from PIL import Image | |
import asyncio | |
import execution | |
import server | |
from nodes import load_custom_node | |
from math import ceil, floor | |
def download_file(url, save_dir='/content/ComfyUI/input'): | |
os.makedirs(save_dir, exist_ok=True) | |
file_name = url.split('/')[-1] | |
file_path = os.path.join(save_dir, file_name) | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
return file_path | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-AutomaticCFG") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Custom-Scripts") | |
load_custom_node("/content/ComfyUI/custom_nodes/Derfuu_ComfyUI_ModdedNodes") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Impact-Pack") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Inspire-Pack") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-KJNodes") | |
load_custom_node("/content/ComfyUI/custom_nodes/comfyui_controlnet_aux") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-TiledDiffusion") | |
load_custom_node("/content/ComfyUI/custom_nodes/was-node-suite-comfyui") | |
Automatic_CFG = NODE_CLASS_MAPPINGS["Automatic CFG"]() | |
ImageScaleToTotalPixels = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageScaleToTotalPixels"]() | |
GetImageSizeAndCount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
TTPlanet_TileSimple = NODE_CLASS_MAPPINGS["TTPlanet_TileSimple_Preprocessor"]() | |
TiledDiffusion = NODE_CLASS_MAPPINGS["TiledDiffusion"]() | |
KSampler_inspire = NODE_CLASS_MAPPINGS["KSampler //Inspire"]() | |
ControlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]() | |
UltralyticsDetectorProvider = NODE_CLASS_MAPPINGS["UltralyticsDetectorProvider"]() | |
SegmDetectorSEGS = NODE_CLASS_MAPPINGS["SegmDetectorSEGS"]() | |
DifferentialDiffusion = nodes_differential_diffusion.NODE_CLASS_MAPPINGS["DifferentialDiffusion"]() | |
DetailerForEach = NODE_CLASS_MAPPINGS["DetailerForEach"]() | |
VAEDecodeTiled = NODE_CLASS_MAPPINGS["VAEDecodeTiled"]() | |
ColorMatch = NODE_CLASS_MAPPINGS["ColorMatch"]() | |
ImageBlend = nodes_post_processing.NODE_CLASS_MAPPINGS["ImageBlend"]() | |
WAS_Image_Blending_Mode = NODE_CLASS_MAPPINGS["Image Blending Mode"]() | |
ImageScale = NODE_CLASS_MAPPINGS["ImageScale"]() | |
ImageScaleBy = NODE_CLASS_MAPPINGS["ImageScaleBy"]() | |
UpscaleModelLoader = nodes_upscale_model.NODE_CLASS_MAPPINGS["UpscaleModelLoader"]() | |
ImageUpscaleWithModel = nodes_upscale_model.NODE_CLASS_MAPPINGS["ImageUpscaleWithModel"]() | |
with torch.inference_mode(): | |
model_patcher, clip, vae, clipvision = load_checkpoint_guess_config("/content/ComfyUI/models/checkpoints/dreamshaperXL_lightningDPMSDE.safetensors", output_vae=True, output_clip=True, embedding_directory=None) | |
tile_control_net = comfy.controlnet.load_controlnet("/content/ComfyUI/models/controlnet/xinsir-controlnet-tile-sdxl-1.0.safetensors") | |
segm_detector = UltralyticsDetectorProvider.doit(model_name="segm/PitEyeDetailer-v2-seg.pt") | |
upscale_model = UpscaleModelLoader.load_model(model_name="4xRealWebPhoto_v4_dat2.safetensors")[0] | |
model_patcher = Automatic_CFG.patch(model=model_patcher, hard_mode=True, boost=True)[0] | |
def generate(input): | |
values = input["input"] | |
input_image = values['input_image_check'] | |
input_image = download_file(input_image) | |
positive_prompt = values['positive_prompt'] | |
negative_prompt = values['negative_prompt'] | |
inspire_seed = values['inspire_seed'] | |
inspire_steps = values['inspire_steps'] | |
inspire_cfg = values['inspire_cfg'] | |
inspire_sampler_name = values['inspire_sampler_name'] | |
inspire_scheduler = values['inspire_scheduler'] | |
inspire_denoise = values['inspire_denoise'] | |
inspire_noise_mode = values['inspire_noise_mode'] | |
inspire_batch_seed_mode = values['inspire_batch_seed_mode'] | |
inspire_variation_seed = values['inspire_variation_seed'] | |
inspire_variation_strength = values['inspire_variation_strength'] | |
inspire_variation_method = values['inspire_variation_method'] | |
scale_factor = values['scale_factor'] | |
blur_strength = values['blur_strength'] | |
strength = values['strength'] | |
start_percent = values['start_percent'] | |
end_percent = values['end_percent'] | |
tile_method = values['tile_method'] | |
tile_overlap = values['tile_overlap'] | |
tile_size = values['tile_size'] | |
threshold = values['threshold'] | |
dilation = values['dilation'] | |
crop_factor = values['crop_factor'] | |
drop_size = values['drop_size'] | |
labels = values['labels'] | |
detailer_guide_size = values['detailer_guide_size'] | |
detailer_guide_size_for_bbox = values['detailer_guide_size_for_bbox'] | |
detailer_max_size = values['detailer_max_size'] | |
detailer_seed = values['detailer_seed'] | |
detailer_steps = values['detailer_steps'] | |
detailer_cfg = values['detailer_cfg'] | |
detailer_sampler_name = values['detailer_sampler_name'] | |
detailer_scheduler = values['detailer_scheduler'] | |
detailer_denoise = values['detailer_denoise'] | |
detailer_feather = values['detailer_feather'] | |
detailer_noise_mask = values['detailer_noise_mask'] | |
detailer_force_inpaint = values['detailer_force_inpaint'] | |
detailer_cycle = values['detailer_cycle'] | |
detailer_inpaint_model = values['detailer_inpaint_model'] | |
detailer_noise_mask_feather = values['detailer_noise_mask_feather'] | |
color_method = values['color_method'] | |
blend_factor = values['blend_factor'] | |
blend_mode = values['blend_mode'] | |
blending_mode = values['blending_mode'] | |
blending_blend_percentage = values['blending_blend_percentage'] | |
vram = values['vram'] | |
upscale_mp = values['upscale_mp'] | |
w_tiles = values['w_tiles'] | |
h_tiles = values['h_tiles'] | |
downscale_by = values['downscale_by'] | |
output_image, output_mask = nodes.LoadImage().load_image(input_image) | |
output_image_s = ImageScaleToTotalPixels.upscale(image=output_image, upscale_method="nearest-exact", megapixels=1.0)[0] | |
image_width = GetImageSizeAndCount.getsize(output_image_s)["result"][1] | |
image_height = GetImageSizeAndCount.getsize(output_image_s)["result"][2] | |
w_math = ceil((image_width * upscale_mp) / 8) * 8 | |
h_math = ceil((image_height * upscale_mp) / 8) * 8 | |
tile_width = ceil((w_math / w_tiles) / 8) * 8 | |
tile_height = ceil((h_math / h_tiles) / 8) * 8 | |
tile_batch_size = floor((vram-3) / ((tile_width*tile_height) / 1000000)) | |
upscale_image = ImageScaleBy.upscale(image=output_image, upscale_method="bilinear", scale_by=downscale_by)[0] | |
upscaled_image = ImageUpscaleWithModel.upscale(upscale_model=upscale_model, image=upscale_image)[0] | |
output_image = ImageScale.upscale(image=upscaled_image, upscale_method="bilinear", width=w_math, height=h_math, crop="disabled")[0] | |
cond, pooled = clip.encode_from_tokens(clip.tokenize(positive_prompt), return_pooled=True) | |
cond = [[cond, {"pooled_output": pooled}]] | |
n_cond, n_pooled = clip.encode_from_tokens(clip.tokenize(negative_prompt), return_pooled=True) | |
n_cond = [[n_cond, {"pooled_output": n_pooled}]] | |
output_image_t = TTPlanet_TileSimple.execute(output_image, scale_factor=scale_factor, blur_strength=blur_strength)[0] | |
positive, negative = ControlNetApplyAdvanced.apply_controlnet(positive=cond, negative=n_cond, control_net=tile_control_net, image=output_image_t, strength=strength, start_percent=start_percent, end_percent=end_percent) | |
tile_model = TiledDiffusion.apply(model=model_patcher, method=tile_method, tile_width=tile_width, tile_height=tile_height, tile_overlap=tile_overlap, tile_batch_size=tile_batch_size)[0] | |
latent_image = nodes.VAEEncode().encode(vae, output_image)[0] | |
inspire_sample = KSampler_inspire.doit(model=tile_model, | |
seed=inspire_seed, | |
steps=inspire_steps, | |
cfg=inspire_cfg, | |
sampler_name=inspire_sampler_name, | |
scheduler=inspire_scheduler, | |
positive=positive, | |
negative=negative, | |
latent_image=latent_image, | |
denoise=inspire_denoise, | |
noise_mode=inspire_noise_mode, | |
batch_seed_mode=inspire_batch_seed_mode, | |
variation_seed=inspire_variation_seed, | |
variation_strength=inspire_variation_strength, | |
variation_method=inspire_variation_method)[0] | |
tiled_decoded = VAEDecodeTiled.decode(vae=vae, samples=inspire_sample, tile_size=tile_size)[0] | |
segs = SegmDetectorSEGS.doit(segm_detector=segm_detector[1], image=output_image, threshold=threshold, dilation=dilation, crop_factor=crop_factor, drop_size=drop_size, labels=labels)[0] | |
dd_model_patcher = DifferentialDiffusion.apply(model_patcher)[0] | |
detailer_image = DetailerForEach.do_detail(image=tiled_decoded, | |
segs=segs, | |
model=dd_model_patcher, | |
clip=clip, | |
vae=vae, | |
guide_size=detailer_guide_size, | |
guide_size_for_bbox=detailer_guide_size_for_bbox, | |
max_size=detailer_max_size, | |
seed=detailer_seed, | |
steps=detailer_steps, | |
cfg=detailer_cfg, | |
sampler_name=detailer_sampler_name, | |
scheduler=detailer_scheduler, | |
positive=cond, | |
negative=n_cond, | |
denoise=detailer_denoise, | |
feather=detailer_feather, | |
noise_mask=detailer_noise_mask, | |
force_inpaint=detailer_force_inpaint, | |
cycle=detailer_cycle, | |
inpaint_model=detailer_inpaint_model, | |
noise_mask_feather=detailer_noise_mask_feather)[0] | |
color_image = ColorMatch.colormatch(image_ref=output_image, image_target=detailer_image, method=color_method)[0] | |
blend_image = ImageBlend.blend_images(image1=color_image, image2=detailer_image, blend_factor=blend_factor, blend_mode=blend_mode)[0] | |
blending_image = WAS_Image_Blending_Mode.image_blending_mode(image_a=blend_image, image_b=output_image, mode=blending_mode, blend_percentage=blending_blend_percentage)[0] | |
Image.fromarray(np.array(blending_image*255, dtype=np.uint8)[0]).save("/content/ultralytics.png") | |
result = "/content/ultralytics.png" | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
default_filename = os.path.basename(result) | |
with open(result, "rb") as file: | |
files = {default_filename: file.read()} | |
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
response = requests.post( | |
f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
data=payload, | |
headers={"Authorization": f"Bot {discord_token}"}, | |
files=files | |
) | |
response.raise_for_status() | |
result_url = response.json()['attachments'][0]['url'] | |
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": result_url, "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists(result): | |
os.remove(result) | |
runpod.serverless.start({"handler": generate}) |