Spaces:
Build error
Build error
File size: 8,731 Bytes
1d7e437 7d8c6d4 1d7e437 7d8c6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# ======================================================================================
#replace installed inference folder with inference folder of IndicTrans2
import shutil
import os
# Source and destination paths
source_folder = "/content/Translation/IndicTrans2/inference"
destination_folder = "/usr/local/lib/python3.10/dist-packages"
# Get the folder name from the source path
folder_name = os.path.basename(source_folder)
# Create the new destination path with the folder name
new_destination_path = os.path.join(destination_folder, folder_name)
# Remove the destination folder if it exists
if os.path.exists(new_destination_path):
shutil.rmtree(new_destination_path)
# Move the folder
shutil.copytree(source_folder, new_destination_path)
# ================================================================================
# Import necessary libraries
import requests
from dotenv import load_dotenv
import os
import gradio as gr
import pandas as pd
from mahaNLP.tagger import EntityRecognizer
from inference.engine import Model
from ai4bharat.transliteration import XlitEngine
# Initialize models
model = Model(r"/content/Translation/indic-en/fairseq_model", model_type="fairseq")
model2 = EntityRecognizer()
model4 = Model(r"/content/Translation/en-indic/fairseq_model", model_type="fairseq")
e = XlitEngine(beam_width=10, src_script_type="indic")
# Function to load Marathi suffixes from file
def load_marathi_suffixes(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
suffixes = [line.strip() for line in file]
return suffixes
marathi_suffixes = load_marathi_suffixes(r"/content/Translation/marathi_stopwords.txt")
# Function to get suffix of a word
def get_suffix(word, suffixes):
for suffix in suffixes:
if word.endswith(suffix):
main_word = word[:-len(suffix)].strip()
return main_word, suffix
return word, ''
# Function to perform Named Entity Recognition (NER) and handle suffixes separately
def ner_tagger(text, suffixes):
tag = model2.get_token_labels(text)
tokens = [(row.word, row.entity_group) for row in tag.itertuples(index=False)]
combined_tokens = []
for word, entity in tokens:
if entity == "Person":
main_word, suffix = get_suffix(word, suffixes)
combined_tokens.append((main_word, "Person"))
if suffix:
combined_tokens.append((suffix, "Other"))
else:
combined_tokens.append((word, entity))
return combined_tokens
# Function to transliterate person tokens
def transliterate_person_tokens(tokens):
transliterated_tokens = []
for token, label in tokens:
if label == 'Person':
split_token = token.rsplit(' ', 1)
if len(split_token) > 1:
main_name, suffix = split_token
else:
main_name = split_token[0]
suffix = ''
transliterated_main_name = e.translit_sentence(main_name, 'mr')
transliterated_token = transliterated_main_name + (' ' + suffix if suffix else '')
transliterated_tokens.append((transliterated_token, label))
else:
transliterated_tokens.append((token, label))
return transliterated_tokens
# Function to transliterate only person tags and maintain their positions
def transliterate_person_tags_only(text, suffixes):
# Perform Named Entity Recognition (NER)
tokens = ner_tagger(text, suffixes)
# Transliterate person tags only
transliterated_text = []
original_person_tokens = {} # To store the transliterated person tokens and their original positions
index_offset = 0 # Offset for adjusting index when inserting placeholders
for index, (token, label) in enumerate(tokens):
if label == 'Person':
# Transliterate the token
transliterated_token = transliterate_person_tokens([(token, label)])
original_person_tokens[index] = transliterated_token[0][0] # Store transliterated token and original position
transliterated_text.append(f"[PERSON{index}]") # Add a placeholder for the transliterated person token
index_offset += 1 # Increase offset after inserting a placeholder
else:
transliterated_text.append(token)
return transliterated_text, original_person_tokens
def count_person_tags(text, suffixes):
# Perform Named Entity Recognition (NER)
tokens = ner_tagger(text, suffixes)
# Count the number of person tags
person_count = sum(1 for token, label in tokens if label == 'Person')
return person_count
def process_text(text, src_lang, tgt_lang, suffixes):
# Count the number of person tags
num_person_tags = count_person_tags(text, suffixes)
if num_person_tags > 6:
# Translate the text directly
translated_text = model.batch_translate([text], src_lang, tgt_lang)[0]
else:
# Transliterate person tags only
transliterated_text, original_person_tokens = transliterate_person_tags_only(text, suffixes)
# Translate the transliterated text
translated_text = model.batch_translate([' '.join(transliterated_text)], src_lang, tgt_lang)[0]
# Replace the placeholders with original person tokens in their original positions
for index, transliterated_token in original_person_tokens.items():
translated_text = translated_text.replace(f"[PERSON{index}]", transliterated_token, 1)
return translated_text
def translate_sentence_with_replacements(model, df, input_text):
# Translate the original sentence
translated_sentence = model.batch_translate([input_text], "eng_Latn", "mar_Deva")[0]
# Tokenize the original sentence
sentence_tokens = input_text.lower().split()
# Find all rows where eng_Latn phrases match as whole phrases in the original sentence
mask = df['eng_Latn'].apply(lambda x: all(word in sentence_tokens for word in x.lower().split()))
filtered_df = df[mask]
# Store replacements
replacements = {}
for _, row in filtered_df.iterrows():
mar_wrong_word = row['mar_Deva_wrong']
mar_correct_word = row['mar_Deva']
if isinstance(mar_wrong_word, str) and isinstance(mar_correct_word, str):
if mar_wrong_word in translated_sentence and mar_wrong_word not in replacements:
translated_sentence = translated_sentence.replace(mar_wrong_word, mar_correct_word)
replacements[mar_wrong_word] = mar_correct_word
return translated_sentence
# Read the DataFrame
df1 = pd.read_excel(r"/content/Translation/Final_Translation_Data.xlsx")
# Function to translate Marathi to English
def translate_marathi_to_english(input_text):
translated_text_en = process_text(input_text, "mar_Deva", "eng_Latn", marathi_suffixes)
return translated_text_en
# Define the translation function for English to Marathi
def translate_english_to_marathi(input_text):
translated_text_mr = translate_sentence_with_replacements(model4, df1, input_text)
return translated_text_mr
# Define the translation function for English to Hindi
def translate_english_to_hindi(input_text):
translated_text_hi = model4.batch_translate(input_text, "eng_Latn", "hin_Deva")[0]
return translated_text_hi
# Define the translation function for Hindi to English
def translate_hindi_to_english(input_text):
translated_text_en = model.translate_paragraph(input_text, "hin_Deva", "eng_Latn")
return translated_text_en
# Define the translation function for Gradio
def translate_with_gradio(input_text, src_lang, tgt_lang):
if src_lang == "Marathi" and tgt_lang == "English":
return translate_marathi_to_english(input_text)
elif src_lang == "English" and tgt_lang == "Marathi":
return translate_english_to_marathi(input_text)
elif src_lang == "English" and tgt_lang == "Hindi":
return translate_english_to_hindi(input_text)
elif src_lang == "Hindi" and tgt_lang == "English":
return translate_hindi_to_english(input_text)
else:
return "Translation direction not supported"
languages = ['English', 'Marathi', 'Hindi']
# Create the Gradio interface
demo = gr.Interface(
fn=translate_with_gradio,
inputs=[
gr.Text(label="Enter text"),
gr.Dropdown(label="From",choices=languages,value="Marathi",),
gr.Dropdown(label="To",choices=languages,value="English")
],
outputs=gr.Textbox(label="Translation"),
title="Multilingual Translation",
description="Translate text between Marathi to English & English to Marathi and Hindi to English & English to Hindi",
)
# Launch the interface
demo.launch(share=True)
|