Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,33 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
4 |
-
from threading import Thread
|
5 |
|
6 |
-
# Load model and tokenizer
|
7 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
8 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
for stop_id in stop_ids:
|
14 |
-
if input_ids[0][-1] == stop_id:
|
15 |
-
return True
|
16 |
-
return False
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
do_sample=True,
|
35 |
-
top_p=1,
|
36 |
-
top_k=50,
|
37 |
-
temperature=float(temperature.value),
|
38 |
-
num_beams=1,
|
39 |
-
stopping_criteria=StoppingCriteriaList([stop])
|
40 |
-
)
|
41 |
-
generated_sequence = model.generate(**generate_kwargs)[0]
|
42 |
-
generated_text = tokenizer.decode(generated_sequence, skip_special_tokens=True)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
gr.ChatInterface(predict).queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
4 |
|
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
6 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T")
|
7 |
|
8 |
+
def generate_text(prompt, temperature, max_length, min_length):
|
9 |
+
# Tokenize the prompt
|
10 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Generate text using the model
|
13 |
+
output = model.generate(input_ids, max_length=max_length, min_length=min_length, temperature=temperature, num_return_sequences=1)
|
14 |
|
15 |
+
# Decode the generated output
|
16 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
17 |
+
|
18 |
+
return generated_text
|
19 |
|
20 |
+
def chatbot_app(prompt, temperature, max_length, min_length):
|
21 |
+
generated_text = generate_text(prompt, temperature, max_length, min_length)
|
22 |
+
return generated_text
|
23 |
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=chatbot_app,
|
26 |
+
inputs=["text", gr.Number(minimum=0.1, maximum=2.0, value=1.0, label="Temperature"),
|
27 |
+
gr.Number(minimum=10, maximum=2048, value=10, label="Max Length"),
|
28 |
+
gr.Number(minimum=1, maximum=2048, value=1, label="Min Length")],
|
29 |
+
outputs="text",
|
30 |
+
live=False,
|
31 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
iface.launch()
|
|
|
|
|
|