File size: 3,091 Bytes
d858831
 
4479682
0022789
 
 
 
 
9148f31
44f737a
 
0022789
b2cd494
 
 
 
 
 
 
ff46a0e
44f737a
9148f31
b2cd494
 
 
d858831
 
 
 
 
 
 
 
0022789
 
813561e
ff46a0e
 
82192ca
0022789
 
813561e
0022789
ff46a0e
0022789
 
d858831
 
 
 
 
 
813561e
 
 
adcd556
f1841f9
154494a
f1841f9
154494a
f1841f9
154494a
f1841f9
 
0022789
d858831
 
 
 
 
 
 
f1841f9
 
 
0022789
 
d858831
0022789
 
d858831
 
0022789
 
 
 
d858831
0022789
 
c5349e7
 
 
 
 
 
 
 
92f8a2c
44f737a
c5349e7
 
44f737a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import time
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import devicetorch
DEVICE = devicetorch.get(torch)

# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)

# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))

# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2", device=DEVICE)

# Restore original torch.load
torch.load = original_load

# Create output folder if not exists
output_folder = '../outputs'
os.makedirs(output_folder, exist_ok=True)

def generate_output_filename():
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    return f"upscaled_{timestamp}.png"

def process_image(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to upscale.")

    # Convert to PIL Image for resizing
    pil_image = Image.fromarray(input_image)

    # Upscale the image using AuraSR
    upscaled_image = process_image_on_gpu(pil_image)

    # Convert result to numpy array if it's not already
    result_array = np.array(upscaled_image)

    # Save result as PNG
    output_filename = generate_output_filename()
    output_path = os.path.join(output_folder, output_filename)
    upscaled_image.save(output_path, format="PNG")

    return [input_image, result_array], output_path

@spaces.GPU
def process_image_on_gpu(pil_image):
    return aura_sr.upscale_4x(pil_image)
    
title = """<h1 align="center">AuraSR-v2 - An open reproduction of the GigaGAN Upscaler from fal.ai</h1>
<p><center>
<a href="https://huggingface.co/fal/AuraSR-v2" target="_blank">[AuraSR-v2]</a>
<a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a>
<a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[v1 Model Page]</a>
</center></p>
"""

css = """
    .img { max-height: 80vh !Important }
    #slider-container { overflow: hidden; display: flex; justify-content: center }
    #row-height { height: 65px !important }
"""

with gr.Blocks(css=css) as demo:
    
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(label="Input Image", type="numpy", elem_classes="img")
            process_btn = gr.Button("Upscale Image")
        with gr.Column(scale=1):
            output_slider = ImageSlider(label="Before / After", type="numpy", elem_classes="img", elem_id="slider-container")
            download_btn = gr.File(label="Download Image", elem_id="row-height")

    process_btn.click(
        fn=process_image,
        inputs=[input_image],
        outputs=[output_slider, download_btn]
    )

    # Add examples
    gr.Examples(
        examples=[
            "image1.png",
            "image3.png"
        ],
        inputs=input_image,
        outputs=output_slider,
        fn=process_image,
#        cache_examples=True
    )

demo.launch(debug=True)