Spaces:
Runtime error
Runtime error
#import spaces | |
import huggingface_hub | |
huggingface_hub.snapshot_download( | |
repo_id='h94/IP-Adapter', | |
allow_patterns=[ | |
'models/**', | |
'sdxl_models/**', | |
], | |
local_dir='./', | |
local_dir_use_symlinks=False, | |
) | |
import gradio as gr | |
from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel | |
from rembg import remove | |
from PIL import Image | |
import torch | |
from ip_adapter import IPAdapterXL | |
from ip_adapter.utils import register_cross_attention_hook, get_net_attn_map, attnmaps2images | |
from PIL import Image, ImageChops, ImageEnhance | |
import numpy as np | |
import os | |
import glob | |
import torch | |
import cv2 | |
import argparse | |
import DPT.util.io | |
from torchvision.transforms import Compose | |
from DPT.dpt.models import DPTDepthModel | |
from DPT.dpt.midas_net import MidasNet_large | |
from DPT.dpt.transforms import Resize, NormalizeImage, PrepareForNet | |
import devicetorch | |
""" | |
Get ZeST Ready | |
""" | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = "models/image_encoder" | |
ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin" | |
controlnet_path = "diffusers/controlnet-depth-sdxl-1.0" | |
#device = "cuda" | |
#torch.cuda.empty_cache() | |
device = devicetorch.get(torch) | |
devicetorch.empty_cache(torch) | |
dtype = devicetorch.dtype(torch, "float16") | |
# load SDXL pipeline | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=dtype).to(device) | |
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
use_safetensors=True, | |
torch_dtype=dtype, | |
add_watermarker=False, | |
).to(device) | |
pipe.unet = register_cross_attention_hook(pipe.unet) | |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device) | |
""" | |
Get Depth Model Ready | |
""" | |
model_path = "DPT/weights/dpt_hybrid-midas-501f0c75.pt" | |
net_w = net_h = 384 | |
model = DPTDepthModel( | |
path=model_path, | |
backbone="vitb_rn50_384", | |
non_negative=True, | |
enable_attention_hooks=False, | |
) | |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
transform = Compose( | |
[ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
normalization, | |
PrepareForNet(), | |
] | |
) | |
model.eval() | |
#@spaces.GPU() | |
def greet(input_image, material_exemplar): | |
""" | |
Compute depth map from input_image | |
""" | |
img = np.array(input_image) | |
img_input = transform({"image": img})["image"] | |
# compute | |
with torch.no_grad(): | |
sample = torch.from_numpy(img_input).unsqueeze(0) | |
# if optimize == True and device == torch.device("cuda"): | |
# sample = sample.to(memory_format=torch.channels_last) | |
# sample = sample.half() | |
prediction = model.forward(sample) | |
prediction = ( | |
torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=img.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
) | |
.squeeze() | |
.cpu() | |
.numpy() | |
) | |
depth_min = prediction.min() | |
depth_max = prediction.max() | |
bits = 2 | |
max_val = (2 ** (8 * bits)) - 1 | |
if depth_max - depth_min > np.finfo("float").eps: | |
out = max_val * (prediction - depth_min) / (depth_max - depth_min) | |
else: | |
out = np.zeros(prediction.shape, dtype=depth.dtype) | |
out = (out / 256).astype('uint8') | |
depth_map = Image.fromarray(out).resize((1024, 1024)) | |
""" | |
Process foreground decolored image | |
""" | |
rm_bg = remove(input_image) | |
target_mask = rm_bg.convert("RGB").point(lambda x: 0 if x < 1 else 255).convert('L').convert('RGB') | |
mask_target_img = ImageChops.lighter(input_image, target_mask) | |
invert_target_mask = ImageChops.invert(target_mask) | |
gray_target_image = input_image.convert('L').convert('RGB') | |
gray_target_image = ImageEnhance.Brightness(gray_target_image) | |
factor = 1.0 # Try adjusting this to get the desired brightness | |
gray_target_image = gray_target_image.enhance(factor) | |
grayscale_img = ImageChops.darker(gray_target_image, target_mask) | |
img_black_mask = ImageChops.darker(input_image, invert_target_mask) | |
grayscale_init_img = ImageChops.lighter(img_black_mask, grayscale_img) | |
init_img = grayscale_init_img | |
""" | |
Process material exemplar and resize all images | |
""" | |
ip_image = material_exemplar.resize((1024, 1024)) | |
init_img = init_img.resize((1024,1024)) | |
mask = target_mask.resize((1024, 1024)) | |
num_samples = 1 | |
images = ip_model.generate(pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=30, seed=42) | |
return images[0] | |
css = """ | |
#col-container{ | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# ZeST: Zero-Shot Material Transfer from a Single Image | |
<p>Upload two images -- input image and material exemplar. (both 1024*1024 for better results) <br /> | |
ZeST extracts the material from the exemplar and cast it onto the input image following the original lighting cues.</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(type="pil", label="input image") | |
input_image2 = gr.Image(type="pil", label = "material examplar") | |
submit_btn = gr.Button("Submit") | |
gr.Examples( | |
examples = [["demo_assets/input_imgs/pumpkin.png", "demo_assets/material_exemplars/cup_glaze.png"]], | |
inputs = [input_image, input_image2] | |
) | |
with gr.Column(): | |
output_image = gr.Image(label="transfer result") | |
submit_btn.click(fn=greet, inputs=[input_image, input_image2], outputs=[output_image]) | |
demo.queue().launch() | |