Spaces:
Runtime error
Runtime error
File size: 11,628 Bytes
b8e6a49 1dfc17d b8e6a49 6151cf4 b8e6a49 a8ff319 b8e6a49 6151cf4 b8e6a49 f3332c3 1dfc17d b8e6a49 7459972 b8e6a49 ee0d936 1dfc17d b8e6a49 8cc7e65 6151cf4 7537dde 6151cf4 8cc7e65 7ccc2b6 8cc7e65 9194752 8cc7e65 e907f73 9194752 8cc7e65 7ccc2b6 8cc7e65 9194752 8cc7e65 9194752 8cc7e65 e907f73 9194752 8cc7e65 a8ff319 b8e6a49 7ccc2b6 dd9221f b8e6a49 7ccc2b6 b8e6a49 ee0d936 b8e6a49 ee0d936 1dfc17d b8e6a49 ee0d936 826449b b8e6a49 8cc7e65 f1df253 8cc7e65 bb15fb2 f1df253 8cc7e65 109bc13 b8e6a49 9194752 b8e6a49 1dfc17d f1df253 b8e6a49 f1df253 b8e6a49 8cc7e65 b8e6a49 8cc7e65 b8e6a49 27111fb b8e6a49 bb15fb2 9194752 b8e6a49 27111fb 7ccc2b6 27111fb 9194752 27111fb b8e6a49 bb15fb2 9194752 b8e6a49 27111fb 7ccc2b6 27111fb 9194752 27111fb 6151cf4 b8e6a49 8cc7e65 b8e6a49 7ccc2b6 b8e6a49 9194752 b8e6a49 3911c7d b8e6a49 8cc7e65 b8e6a49 7ccc2b6 b8e6a49 9194752 b8e6a49 6151cf4 b8e6a49 0e6190d b8e6a49 e907f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import base64
import logging
import os
import tempfile
import time
from datetime import datetime
import gradio as gr
import torch
import torchaudio
import urllib.request
from examples import examples
from model import decode, get_pretrained_model, language_to_models, sample_rate
languages = list(language_to_models.keys())
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = in_filename + ".wav"
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
_ = os.system(
f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 '{out_filename}.flac'"
)
with open(out_filename + ".flac", "rb") as f:
s = "\n" + out_filename + "\n"
s += base64.b64encode(f.read()).decode()
logging.info(s)
return out_filename
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process_url(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
url: str,
):
logging.info(f"Processing URL: {url}")
with tempfile.NamedTemporaryFile() as f:
try:
urllib.request.urlretrieve(url, f.name)
return process(
in_filename=f.name,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_uploaded_file(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_microphone(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first click 'Record from microphone', speak, "
"click 'Stop recording', and then "
"click the button 'submit for recognition'",
"result_item_error",
)
logging.info(f"Processing microphone: {in_filename}")
try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
@torch.no_grad()
def process(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
logging.info(f"language: {language}")
logging.info(f"repo_id: {repo_id}")
logging.info(f"decoding_method: {decoding_method}")
logging.info(f"num_active_paths: {num_active_paths}")
logging.info(f"in_filename: {in_filename}")
filename = convert_to_wav(in_filename)
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
logging.info(f"Started at {date_time}")
start = time.time()
recognizer = get_pretrained_model(
repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
text = decode(recognizer, filename)
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
metadata = torchaudio.info(filename)
duration = metadata.num_frames / sample_rate
rtf = (end - start) / duration
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Wave duration : {duration: .3f} s <br/>
Processing time: {end - start: .3f} s <br/>
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
"""
if rtf > 1:
info += (
"<br/>We are loading the model for the first run. "
"Please run again to measure the real RTF.<br/>"
)
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
return text, build_html_output(info)
title = "# Automatic Speech Recognition with Next-gen Kaldi"
description = """
This space shows how to do automatic speech recognition with Next-gen Kaldi.
Please visit
<https://huggingface.co/spaces/k2-fsa/streaming-automatic-speech-recognition>
for streaming speech recognition with **Next-gen Kaldi**.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting the following links:
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/sherpa>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
decoding_method_radio = gr.Radio(
label="Decoding method",
choices=["greedy_search", "modified_beam_search"],
value="greedy_search",
)
num_active_paths_slider = gr.Slider(
minimum=1,
value=4,
step=1,
label="Number of active paths for modified_beam_search",
)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Upload from disk",
)
upload_button = gr.Button("Submit for recognition")
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
uploaded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
fn=process_uploaded_file,
)
with gr.TabItem("Record from microphone"):
microphone = gr.Audio(
source="microphone", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Record from microphone",
)
record_button = gr.Button("Submit for recognition")
recorded_output = gr.Textbox(label="Recognized speech from recordings")
recorded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
fn=process_microphone,
)
with gr.TabItem("From URL"):
url_textbox = gr.Textbox(
max_lines=1,
placeholder="URL to an audio file",
label="URL",
interactive=True,
)
url_button = gr.Button("Submit for recognition")
url_output = gr.Textbox(label="Recognized speech from URL")
url_html_info = gr.HTML(label="Info")
upload_button.click(
process_uploaded_file,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
)
record_button.click(
process_microphone,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
)
url_button.click(
process_url,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
url_textbox,
],
outputs=[url_output, url_html_info],
)
gr.Markdown(description)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|