Spaces:
Runtime error
Runtime error
File size: 5,709 Bytes
72ec471 3b25c41 72ec471 3b25c41 a0c8166 72ec471 2b53f2b 72ec471 2b53f2b 72ec471 2b53f2b 3b25c41 2b53f2b 3b25c41 a0c8166 3b25c41 a0c8166 3b25c41 a0c8166 3b25c41 2b53f2b 3b25c41 2b53f2b 3b25c41 2b53f2b a0c8166 3b25c41 a0c8166 3b25c41 a0c8166 3b25c41 72ec471 2b53f2b a0c8166 2b53f2b a0c8166 72ec471 2b53f2b 72ec471 2b53f2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# run.py
import subprocess
import sys
import os
def main():
# Start Streamlit server only
port = int(os.environ.get("PORT", 7860)) # Hugging Face Spaces uses port 7860
streamlit_process = subprocess.Popen([
sys.executable,
"-m",
"streamlit",
"run",
"app.py",
"--server.port",
str(port),
"--server.address",
"0.0.0.0"
])
try:
streamlit_process.wait()
except KeyboardInterrupt:
streamlit_process.terminate()
if __name__ == "__main__":
main()
# api.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List
from app import translate_text
app = FastAPI()
class InputData(BaseModel):
sentences: List[str]
target_lang: str
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.post("/translate")
async def translate(input_data: InputData):
try:
result = translate_text(
sentences=input_data.sentences,
target_lang=input_data.target_lang
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# app.py
import streamlit as st
from fastapi import FastAPI
from typing import List
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit import IndicProcessor
import json
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import uvicorn
# Initialize FastAPI
api = FastAPI()
# Add CORS middleware
api.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize models and processors
model = AutoModelForSeq2SeqLM.from_pretrained(
"ai4bharat/indictrans2-en-indic-1B",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"ai4bharat/indictrans2-en-indic-1B",
trust_remote_code=True
)
ip = IndicProcessor(inference=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(DEVICE)
def translate_text(sentences: List[str], target_lang: str):
try:
src_lang = "eng_Latn"
batch = ip.preprocess_batch(
sentences,
src_lang=src_lang,
tgt_lang=target_lang
)
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True
).to(DEVICE)
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1
)
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
translations = ip.postprocess_batch(generated_tokens, lang=target_lang)
return {
"translations": translations,
"source_language": src_lang,
"target_language": target_lang
}
except Exception as e:
raise Exception(f"Translation failed: {str(e)}")
# FastAPI routes
@api.get("/health")
async def health_check():
return {"status": "healthy"}
@api.post("/translate")
async def translate_endpoint(sentences: List[str], target_lang: str):
try:
result = translate_text(sentences=sentences, target_lang=target_lang)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Streamlit interface
def main():
st.title("Indic Language Translator")
# Input text
text_input = st.text_area("Enter text to translate:", "Hello, how are you?")
# Language selection
target_languages = {
"Hindi": "hin_Deva",
"Bengali": "ben_Beng",
"Tamil": "tam_Taml",
"Telugu": "tel_Telu",
"Marathi": "mar_Deva",
"Gujarati": "guj_Gujr",
"Kannada": "kan_Knda",
"Malayalam": "mal_Mlym",
"Punjabi": "pan_Guru",
"Odia": "ori_Orya"
}
target_lang = st.selectbox(
"Select target language:",
options=list(target_languages.keys())
)
if st.button("Translate"):
try:
result = translate_text(
sentences=[text_input],
target_lang=target_languages[target_lang]
)
st.success("Translation:")
st.write(result["translations"][0])
except Exception as e:
st.error(f"Translation failed: {str(e)}")
# Add API documentation
st.markdown("---")
st.header("API Documentation")
st.markdown("""
To use the translation API, send POST requests to:
```
https://USERNAME-SPACE_NAME.hf.space/translate
```
Request body format:
```json
{
"sentences": ["Your text here"],
"target_lang": "hin_Deva"
}
```
""")
st.markdown("Available target languages:")
for lang, code in target_languages.items():
st.markdown(f"- {lang}: `{code}`")
if __name__ == "__main__":
# Run both Streamlit and FastAPI
import threading
def run_fastapi():
uvicorn.run(api, host="0.0.0.0", port=8000)
# Start FastAPI in a separate thread
api_thread = threading.Thread(target=run_fastapi)
api_thread.start()
# Run Streamlit
main() |