File size: 5,914 Bytes
b2e385a
88d9c40
2655ad8
b2e385a
 
 
5a3f658
b2e385a
 
3ef94a5
b2e385a
 
 
 
a328dd2
2655ad8
19dd1b9
dce9e22
37a83d8
 
 
 
 
 
3ef94a5
 
37a83d8
 
 
 
 
 
 
 
 
 
dce9e22
5a3f658
 
 
 
37a83d8
5a3f658
 
 
 
 
37a83d8
5a3f658
 
 
 
 
 
 
 
 
b2e385a
5a3f658
 
 
 
 
3ef94a5
5a3f658
 
3ef94a5
b2e385a
 
37a83d8
dce9e22
 
 
 
 
 
37a83d8
f921425
dce9e22
f921425
 
 
37a83d8
f921425
37a83d8
 
f921425
dce9e22
 
 
 
 
 
 
 
 
 
 
37a83d8
 
 
88d9c40
b2e385a
 
 
37a83d8
 
0537fbe
 
 
 
 
37a83d8
b0ec887
b2e385a
 
 
0cd2bb2
3ef94a5
b2e385a
 
 
2655ad8
 
f921425
2655ad8
 
b0ec887
37a83d8
2655ad8
5a3f658
 
 
37a83d8
5a3f658
3ef94a5
b0ec887
37a83d8
88d9c40
 
 
 
 
dce9e22
4e8ec3f
dce9e22
5a3f658
4e8ec3f
b0ec887
203a7f7
5a3f658
88d9c40
dce9e22
f921425
 
dce9e22
b2e385a
37a83d8
f921425
dce9e22
88d9c40
 
f921425
3ef94a5
dce9e22
b2e385a
37a83d8
f921425
37a83d8
 
4e8ec3f
f921425
b2e385a
 
37a83d8
 
 
 
 
 
 
dce9e22
f921425
4e8ec3f
2655ad8
f921425
 
 
 
37a83d8
0537fbe
f921425
3ef94a5
4e8ec3f
 
2655ad8
f921425
 
 
 
37a83d8
0537fbe
f921425
3ef94a5
4e8ec3f
88d9c40
 
b0ec887
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import hashlib
import json
import os
import random
import uuid
from datetime import datetime
from pathlib import Path

import gradio as gr
from huggingface_hub import CommitScheduler, get_token, login
from openai import OpenAI

from prompts import basic_prompt, detailed_genre_description_prompt
from theme import TufteInspired

# Ensure you're logged in to Hugging Face
login(os.getenv("HF_TOKEN"))

# Define available models
MODELS = [
    "meta-llama/Meta-Llama-3-70B-Instruct",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
]


def get_random_model():
    return random.choice(MODELS)


def create_client(model_id):
    return OpenAI(
        base_url=f"https://api-inference.huggingface.co/models/{model_id}/v1",
        api_key=get_token(),
    )


# Set up dataset storage
dataset_folder = Path("dataset")
dataset_folder.mkdir(exist_ok=True)


# Function to get the latest dataset file
def get_latest_dataset_file():
    files = list(dataset_folder.glob("data_*.jsonl"))
    return max(files, key=os.path.getctime) if files else None


# Check for existing dataset and create or append to it
if latest_file := get_latest_dataset_file():
    dataset_file = latest_file
    print(f"Appending to existing dataset file: {dataset_file}")
else:
    dataset_file = dataset_folder / f"data_{uuid.uuid4()}.jsonl"
    print(f"Creating new dataset file: {dataset_file}")

# Set up CommitScheduler for dataset uploads
repo_id = "davanstrien/summer-reading-preferences"
scheduler = CommitScheduler(
    repo_id=repo_id,
    repo_type="dataset",
    folder_path=dataset_folder,
    path_in_repo="data",
    every=1,  # Upload every minute
)

# Global dictionary to store votes
votes = {}


def generate_prompt():
    if random.choice([True, False]):
        return detailed_genre_description_prompt()
    else:
        return basic_prompt()


def get_and_store_prompt():
    prompt = generate_prompt()
    print(prompt)  # Keep this for debugging
    return prompt


def generate_blurb(prompt):
    model_id = get_random_model()
    client = create_client(model_id)
    max_tokens = random.randint(100, 1000)
    chat_completion = client.chat.completions.create(
        model="tgi",
        messages=[
            {"role": "user", "content": prompt},
        ],
        stream=True,
        max_tokens=max_tokens,
    )
    full_text = ""
    for message in chat_completion:
        full_text += message.choices[0].delta.content
        yield full_text, model_id
    return full_text, model_id  # Return final result with model_id


def generate_vote_id(user_id, blurb):
    return hashlib.md5(f"{user_id}:{blurb}".encode()).hexdigest()


def log_blurb_and_vote(
    prompt,
    blurb,
    vote,
    model_id,
    user_info: gr.OAuthProfile | None,
):
    user_id = user_info.username if user_info is not None else str(uuid.uuid4())
    vote_id = generate_vote_id(user_id, blurb)

    if vote_id in votes:
        gr.Info("You've already voted on this blurb!")
        return None, gr.Row.update(visible=False)

    votes[vote_id] = vote

    log_entry = {
        "timestamp": datetime.now().isoformat(),
        "prompt": prompt,
        "blurb": blurb,
        "vote": vote,
        "user_id": user_id,
        "model_id": model_id,
    }
    with scheduler.lock:
        with dataset_file.open("a") as f:
            f.write(json.dumps(log_entry) + "\n")

    gr.Info("Thank you for voting! Your feedback will be synced to the dataset.")
    return f"Logged: {vote} by user {user_id}", gr.Row.update(visible=False)


# Create custom theme
tufte_theme = TufteInspired()

# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
    gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
    gr.Markdown(
        """<p style='text-align: center;'>Looking for your next summer read? 
    Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://huggingface.co/datasets/your-username/your-dataset-repo">this</a> Hugging Face dataset</p>"""
    )

    with gr.Row():
        login_btn = gr.LoginButton(size="sm")
    with gr.Row():
        generate_btn = gr.Button("Create a book", variant="primary")

    prompt_state = gr.State()
    blurb_output = gr.Markdown(label="Book blurb")
    user_state = gr.State()
    model_state = gr.State()

    with gr.Row(visible=False) as voting_row:
        upvote_btn = gr.Button("πŸ‘ would read")
        downvote_btn = gr.Button("πŸ‘Ž wouldn't read")

    vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=True)

    def generate_and_show(prompt, user_info):
        return "Generating...", gr.Row.update(visible=False), user_info, None

    def show_voting_buttons(blurb, model_id):
        return blurb, gr.Row.update(visible=True), model_id

    generate_btn.click(get_and_store_prompt, outputs=prompt_state).then(
        generate_and_show,
        inputs=[prompt_state, login_btn],
        outputs=[blurb_output, voting_row, user_state, model_state],
    ).then(
        generate_blurb, inputs=prompt_state, outputs=[blurb_output, model_state]
    ).then(
        show_voting_buttons,
        inputs=[blurb_output, model_state],
        outputs=[blurb_output, voting_row, model_state],
    )

    upvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="upvote", visible=False),
            model_state,
            user_state,
        ],
        outputs=[vote_output, voting_row],
    )
    downvote_btn.click(
        log_blurb_and_vote,
        inputs=[
            prompt_state,
            blurb_output,
            gr.Textbox(value="downvote", visible=False),
            model_state,
            user_state,
        ],
        outputs=[vote_output, voting_row],
    )

if __name__ == "__main__":
    demo.launch(debug=True)